ﻻ يوجد ملخص باللغة العربية
Stochastic processes provide a mathematically elegant way model complex data. In theory, they provide flexible priors over function classes that can encode a wide range of interesting assumptions. In practice, however, efficient inference by optimisation or marginalisation is difficult, a problem further exacerbated with big data and high dimensional input spaces. We propose a novel variational autoencoder (VAE) called the prior encoding variational autoencoder ($pi$VAE). The $pi$VAE is finitely exchangeable and Kolmogorov consistent, and thus is a continuous stochastic process. We use $pi$VAE to learn low dimensional embeddings of function classes. We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference (such as the integral of a log Gaussian process). For popular tasks, such as spatial interpolation, $pi$VAE achieves state-of-the-art performance both in terms of accuracy and computational efficiency. Perhaps most usefully, we demonstrate that the low dimensional independently distributed latent space representation learnt provides an elegant and scalable means of performing Bayesian inference for stochastic processes within probabilistic programming languages such as Stan.
Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in various domains. However, they struggle to generate high-quality images, especially when samples are obtained from the prior without any t
Although substantial efforts have been made to learn disentangled representations under the variational autoencoder (VAE) framework, the fundamental properties to the dynamics of learning of most VAE models still remain unknown and under-investigated
Variational autoencoders (VAE) are a powerful and widely-used class of models to learn complex data distributions in an unsupervised fashion. One important limitation of VAEs is the prior assumption that latent sample representations are independent
Variational Autoencoder is a scalable method for learning latent variable models of complex data. It employs a clear objective that can be easily optimized. However, it does not explicitly measure the quality of learned representations. We propose a
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary m