ترغب بنشر مسار تعليمي؟ اضغط هنا

Recognizing $k$-Clique Extendible Orderings

54   0   0.0 ( 0 )
 نشر من قبل Mathew Francis
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A graph is $k$-clique-extendible if there is an ordering of the vertices such that whenever two $k$-sized overlapping cliques $A$ and $B$ have $k-1$ common vertices, and these common vertices appear between the two vertices $a,bin (Asetminus B)cup (Bsetminus A)$ in the ordering, there is an edge between $a$ and $b$, implying that $Acup B$ is a $(k+1)$-sized clique. Such an ordering is said to be a $k$-C-E ordering. These graphs arise in applications related to modelling preference relations. Recently, it has been shown that a maximum sized clique in such a graph can be found in $n^{O(k)}$ time when the ordering is given. When $k$ is $2$, such graphs are precisely the well-known class of comparability graphs and when $k$ is $3$ they are called triangle-extendible graphs. It has been shown that triangle-extendible graphs appear as induced subgraphs of visibility graphs of simple polygons, and the complexity of recognizing them has been mentioned as an open problem in the literature. While comparability graphs (i.e. $2$-C-E graphs) can be recognized in polynomial time, we show that recognizing $k$-C-E graphs is NP-hard for any fixed $k geq 3$ and co-NP-hard when $k$ is part of the input. While our NP-hardness reduction for $k geq 4$ is from the betweenness problem, for $k=3$, our reduction is an intricate one from the $3$-colouring problem. We also show that the problems of determining whether a given ordering of the vertices of a graph is a $k$-C-E ordering, and that of finding an $ell$-sized (or maximum sized) clique in a $k$-C-E graph, given a $k$-C-E ordering, are complete for the parameterized complexity classes co-W[1] and W[1] respectively, when parameterized by $k$. However we show that the former is fixed-parameter tractable when parameterized by the treewidth of the graph.


قيم البحث

اقرأ أيضاً

A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called 4-point condition. However, in case k > 2 Pachter and Speyer recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k >= 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2k-element subset of X arises from some tree, and that 2k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition.
As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-neg ative submodular objective functions subject to $k$-extendible system constraints. Combining the sampling process and the decreasing threshold strategy, our algorithm Sample Decreasing Threshold Greedy Algorithm (SDTGA) obtains an expected approximation guarantee of ($p-epsilon$) for monotone submodular functions and of ($p(1-p)-epsilon$) for non-monotone cases with expected computational complexity of only $O(frac{pn}{epsilon}lnfrac{r}{epsilon})$, where $r$ is the largest size of the feasible solutions, $0<p leq frac{1}{1+k}$ is the sampling probability and $0< epsilon < p$. If we fix the sampling probability $p$ as $frac{1}{1+k}$, we get the best approximation ratios for both monotone and non-monotone submodular functions which are $(frac{1}{1+k}-epsilon)$ and $(frac{k}{(1+k)^2}-epsilon)$ respectively. While the parameter $epsilon$ exists for the trade-off between the approximation ratio and the time complexity. Therefore, our algorithm can handle larger scale of submodular maximization problems than existing algorithms.
In this paper, we study new batch-dynamic algorithms for the $k$-clique counting problem, which are dynamic algorithms where the updates are batches of edge insertions and deletions. We study this problem in the parallel setting, where the goal is to obtain algorithms with low (polylogarithmic) depth. Our first result is a new parallel batch-dynamic triangle counting algorithm with $O(Deltasqrt{Delta+m})$ amortized work and $O(log^* (Delta+m))$ depth with high probability, and $O(Delta+m)$ space for a batch of $Delta$ edge insertions or deletions. Our second result is an algebraic algorithm based on parallel fast matrix multiplication. Assuming that a parallel fast matrix multiplication algorithm exists with parallel matrix multiplication constant $omega_p$, the same algorithm solves dynamic $k$-clique counting with $Oleft(minleft(Delta m^{frac{(2k - 1)omega_p}{3(omega_p + 1)}}, (Delta+m)^{frac{2(k + 1)omega_p}{3(omega_p + 1)}}right)right)$ amortized work and $O(log (Delta+m))$ depth with high probability, and $Oleft((Delta+m)^{frac{2(k + 1)omega_p}{3(omega_p + 1)}}right)$ space. Using a recently developed parallel $k$-clique counting algorithm, we also obtain a simple batch-dynamic algorithm for $k$-clique counting on graphs with arboricity $alpha$ running in $O(Delta(m+Delta)alpha^{k-4})$ expected work and $O(log^{k-2} n)$ depth with high probability, and $O(m + Delta)$ space. Finally, we present a multicore CPU implementation of our parallel batch-dynamic triangle counting algorithm. On a 72-core machine with two-way hyper-threading, our implementation achieves 36.54--74.73x parallel speedup, and in certain cases achieves significant speedups over existing parallel algorithms for the problem, which are not theoretically-efficient.
In this paper, we prove that, given a clique-width $k$-expression of an $n$-vertex graph, textsc{Hamiltonian Cycle} can be solved in time $n^{mathcal{O}(k)}$. This improves the naive algorithm that runs in time $n^{mathcal{O}(k^2)}$ by Espelage et al . (WG 2001), and it also matches with the lower bound result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in time $n^{o(k)}$ (SIAM. J. Computing 2014). We present a technique of representative sets using two-edge colored multigraphs on $k$ vertices. The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors alternately can be determined by two information: the number of colored edges incident with each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on $k$ vertices with at most $n$ edges.
132 - Yasamin Nazari 2019
We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic hopbound in polylogarithmic time. Given a graph $G=(V,E)$, a $(beta,epsilon)$-hopset $H$ with hopbound $beta$, is a set of edges added to $G$ such that fo r any pair of nodes $u$ and $v$ in $G$ there is a path with at most $beta$ hops in $G cup H$ with length within $(1+epsilon)$ of the shortest path between $u$ and $v$ in $G$. Our hopsets are significantly sparser than the recent construction of Censor-Hillel et al. [6], that constructs a hopset of size $tilde{O}(n^{3/2})$, but with a smaller polylogarithmic hopbound. On the other hand, the previously known constructions of sparse hopsets with polylogarithmic hopbound in the Congested Clique model, proposed by Elkin and Neiman [10],[11],[12], all require polynomial rounds. One tool that we use is an efficient algorithm that constructs an $ell$-limited neighborhood cover, that may be of independent interest. Finally, as a side result, we also give a hopset construction in a variant of the low-memory Massively Parallel Computation model, with improved running time over existing algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا