ﻻ يوجد ملخص باللغة العربية
As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-negative submodular objective functions subject to $k$-extendible system constraints. Combining the sampling process and the decreasing threshold strategy, our algorithm Sample Decreasing Threshold Greedy Algorithm (SDTGA) obtains an expected approximation guarantee of ($p-epsilon$) for monotone submodular functions and of ($p(1-p)-epsilon$) for non-monotone cases with expected computational complexity of only $O(frac{pn}{epsilon}lnfrac{r}{epsilon})$, where $r$ is the largest size of the feasible solutions, $0<p leq frac{1}{1+k}$ is the sampling probability and $0< epsilon < p$. If we fix the sampling probability $p$ as $frac{1}{1+k}$, we get the best approximation ratios for both monotone and non-monotone submodular functions which are $(frac{1}{1+k}-epsilon)$ and $(frac{k}{(1+k)^2}-epsilon)$ respectively. While the parameter $epsilon$ exists for the trade-off between the approximation ratio and the time complexity. Therefore, our algorithm can handle larger scale of submodular maximization problems than existing algorithms.
Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern day applications can
The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the emph{adaptive complexity}, capturing the number of sequential rou
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where
We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithm
We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given $T$ i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequenc