ﻻ يوجد ملخص باللغة العربية
We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic hopbound in polylogarithmic time. Given a graph $G=(V,E)$, a $(beta,epsilon)$-hopset $H$ with hopbound $beta$, is a set of edges added to $G$ such that for any pair of nodes $u$ and $v$ in $G$ there is a path with at most $beta$ hops in $G cup H$ with length within $(1+epsilon)$ of the shortest path between $u$ and $v$ in $G$. Our hopsets are significantly sparser than the recent construction of Censor-Hillel et al. [6], that constructs a hopset of size $tilde{O}(n^{3/2})$, but with a smaller polylogarithmic hopbound. On the other hand, the previously known constructions of sparse hopsets with polylogarithmic hopbound in the Congested Clique model, proposed by Elkin and Neiman [10],[11],[12], all require polynomial rounds. One tool that we use is an efficient algorithm that constructs an $ell$-limited neighborhood cover, that may be of independent interest. Finally, as a side result, we also give a hopset construction in a variant of the low-memory Massively Parallel Computation model, with improved running time over existing algorithms.
In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an $O(n^{1-2
In this paper, we study new batch-dynamic algorithms for the $k$-clique counting problem, which are dynamic algorithms where the updates are batches of edge insertions and deletions. We study this problem in the parallel setting, where the goal is to
This paper provides three nearly-optimal algorithms for scheduling $t$ jobs in the $mathsf{CLIQUE}$ model. First, we present a deterministic scheduling algorithm that runs in $O(mathsf{GlobalCongestion} + mathsf{dilation})$ rounds for jobs that are s
We design fast deterministic algorithms for distance computation in the congested clique model. Our key contributions include: -- A $(2+epsilon)$-approximation for all-pairs shortest paths in $O(log^2{n} / epsilon)$ rounds on unweighted undirected
Given a weighted undirected graph $G=(V,E,w)$, a hopset $H$ of hopbound $beta$ and stretch $(1+epsilon)$ is a set of edges such that for any pair of nodes $u, v in V$, there is a path in $G cup H$ of at most $beta$ hops, whose length is within a $(1+