ﻻ يوجد ملخص باللغة العربية
Transfer learning has emerged as a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains. This process consists of taking a neural network pre-trained on a large feature-rich source dataset, freezing the early layers that encode essential generic image properties, and then fine-tuning the last few layers in order to capture specific information related to the target situation. This approach is particularly useful when only limited or weakly labeled data are available for the new task. In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models, especially if only limited data are available for the new domain task. Further, we observe that adversarial training biases the learnt representations to retaining shapes, as opposed to textures, which impacts the transferability of the source models. Finally, through the lens of influence functions, we discover that transferred adversarially-trained models contain more human-identifiable semantic information, which explains -- at least partly -- why adversarially-trained models transfer better.
It is common practice in deep learning to use overparameterized networks and train for as long as possible; there are numerous studies that show, both theoretically and empirically, that such practices surprisingly do not unduly harm the generalizati
Transfer learning is a widely-used paradigm in deep learning, where models pre-trained on standard datasets can be efficiently adapted to downstream tasks. Typically, better pre-trained models yield better transfer results, suggesting that initial ac
Deep neural networks are known to be vulnerable to adversarial attacks. Current methods of defense from such attacks are based on either implicit or explicit regularization, e.g., adversarial training. Randomized smoothing, the averaging of the class
Transfer learning, in which a network is trained on one task and re-purposed on another, is often used to produce neural network classifiers when data is scarce or full-scale training is too costly. When the goal is to produce a model that is not onl
The recently-introduced class of ordinary differential equation networks (ODE-Nets) establishes a fruitful connection between deep learning and dynamical systems. In this work, we reconsider formulations of the weights as continuous-depth functions u