ﻻ يوجد ملخص باللغة العربية
Inspired in our work on the controllability for the semilinear with memory cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolution equations in a Hilbert space with memory and delay terms which arise from reaction-diffusion models. We prove that, for each initial and an arbitrary neighborhood of a final state, one can steer the system from the initial condition to this neighborhood of the final condition with an appropriated collection of admissible controls thanks to the delays. Our proof is based on semigroup theory and A.E. Bashirov et al. technique cite{Bashirov-Ghahramanlou:2015aa, Bashirov-Jneid:2013aa, Bashirov-Mahmudov:2007aa} which avoids fixed point theorems.
The semilinear beam equation with impulses, memory and delay is considered. We obtain the approximate controllability. This is done by employing a technique that avoids fixed point theorems and pulling back the control solution to a fixed curve in a
This paper extends the theory of regular solutions ($C^1$ in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of $G$-derivative, which is introduced and discussed. A re
In this paper, we study approximate and exact controllability of the linear difference equation $x(t) = sum_{j=1}^N A_j x(t - Lambda_j) + B u(t)$ in $L^2$, with $x(t) in mathbb C^d$ and $u(t) in mathbb C^m$, using as a basic tool a representation for
Alternating direction method of multipliers (ADMM) is a powerful first order methods for various applications in signal processing and imaging. However, there is no clear result on the weak convergence of ADMM with relaxation studied by Eckstein and
We obtain necessary conditions of optimality for impulsive Volterra integral equations with switching and impulsive controls, with variable impulse time-instants. The present work continues and complements our previous work on impulsive Volterra control with fixed impulse times.