ﻻ يوجد ملخص باللغة العربية
Alternating direction method of multipliers (ADMM) is a powerful first order methods for various applications in signal processing and imaging. However, there is no clear result on the weak convergence of ADMM with relaxation studied by Eckstein and Bertsakas cite{EP} in infinite dimensional Hilbert spaces. In this paper, by employing a kind of partial gap analysis, we prove the weak convergence of general preconditioned and relaxed ADMM in infinite dimensional Hilbert spaces, with preconditioning for solving all the involved implicit equations under mild conditions. We also give the corresponding ergodic convergence rates respecting to the partial gap function. Furthermore, the connections between certain preconditioned and relaxed ADMM and the corresponding Douglas-Rachford splitting methods are also discussed, following the idea of Gabay in cite{DGBA}. Numerical tests also show the efficiency of the proposed overrelaxation variants of preconditioned ADMM.
In this article, we consider the preconditioned Hamiltonian Monte Carlo (pHMC) algorithm defined directly on an infinite-dimensional Hilbert space. In this context, and under a condition reminiscent of strong log-concavity of the target measure, we p
Inspired in our work on the controllability for the semilinear with memory cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolu
Motivated by the success of reinforcement learning (RL) for discrete-time tasks such as AlphaGo and Atari games, there has been a recent surge of interest in using RL for continuous-time control of physical systems (cf. many challenging tasks in Open
In this paper we investigate and compare different gradient algorithms designed for the domain expression of the shape derivative. Our main focus is to examine the usefulness of kernel reproducing Hilbert spaces for PDE constrained shape optimisation
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator $T$ and a single-valued monotone, Lipschitz continuous, and expectation-valued operator $V$. We draw motivation from the