ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllability of the impulsive semi linear beam equation with memory and delay

55   0   0.0 ( 0 )
 نشر من قبل Cristi Darley Guevara
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The semilinear beam equation with impulses, memory and delay is considered. We obtain the approximate controllability. This is done by employing a technique that avoids fixed point theorems and pulling back the control solution to a fixed curve in a short time interval. Demonstrating, once again, that the controllability of a system is robust under the influence of impulses and delays.



قيم البحث

اقرأ أيضاً

Inspired in our work on the controllability for the semilinear with memory cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolu tion equations in a Hilbert space with memory and delay terms which arise from reaction-diffusion models. We prove that, for each initial and an arbitrary neighborhood of a final state, one can steer the system from the initial condition to this neighborhood of the final condition with an appropriated collection of admissible controls thanks to the delays. Our proof is based on semigroup theory and A.E. Bashirov et al. technique cite{Bashirov-Ghahramanlou:2015aa, Bashirov-Jneid:2013aa, Bashirov-Mahmudov:2007aa} which avoids fixed point theorems.
In this paper, we study approximate and exact controllability of the linear difference equation $x(t) = sum_{j=1}^N A_j x(t - Lambda_j) + B u(t)$ in $L^2$, with $x(t) in mathbb C^d$ and $u(t) in mathbb C^m$, using as a basic tool a representation for mula for its solution in terms of the initial condition, the control $u$, and some suitable matrix coefficients. When $Lambda_1, dotsc, Lambda_N$ are commensurable, approximate and exact controllability are equivalent and can be characterized by a Kalman criterion. This paper focuses on providing characterizations of approximate and exact controllability without the commensurability assumption. In the case of two-dimensional systems with two delays, we obtain an explicit characterization of approximate and exact controllability in terms of the parameters of the problem. In the general setting, we prove that approximate controllability from zero to constant states is equivalent to approximate controllability in $L^2$. The corresponding result for exact controllability is true at least for two-dimensional systems with two delays.
73 - Ping Lin , Hatem Zaag 2021
This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $ T>0$ and a point $a$ in this domain, we find a feedback control, which is acted on an internal subset $omega$ of this domain, such that the corresponding solution to this system blows up at time $T$ and holds unique point $a$. We show that $ain omega$ can be the unique blowup point of the corresponding solution with a certain feedback control, and for any feedback control, $ain Omegasetminus overline{omega}$ could not be the unique blowup point.
We study one-parametric perturbations of finite dimensional real Hamiltonians depending on two controls, and we show that generically in the space of Hamiltonians, conical intersections of eigenvalues can degenerate into semi-conical intersections of eigenvalues. Then, through the use of normal forms, we study the problem of ensemble controllability between the eigenstates of a generic Hamiltonian.
We propose a numerical method to approximate the exact averaged boundary control of a family of wave equations depending on an unknown parameter sigma. More precisely the control, independent of sigma, that drives an initial data to a family of final states at time t = T, whose average in sigma is given. The idea is to project the control problem in the finite dimensional space generated by the first N eigenfunctions of the Laplace operator. The resulting discrete control problem has solution whenever the continuous one has it, and we give a convergence result of the discrete controls to the continuous one. The method is illustrated with several examples in 1-d and 2-d in a square domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا