ﻻ يوجد ملخص باللغة العربية
The semilinear beam equation with impulses, memory and delay is considered. We obtain the approximate controllability. This is done by employing a technique that avoids fixed point theorems and pulling back the control solution to a fixed curve in a short time interval. Demonstrating, once again, that the controllability of a system is robust under the influence of impulses and delays.
Inspired in our work on the controllability for the semilinear with memory cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolu
In this paper, we study approximate and exact controllability of the linear difference equation $x(t) = sum_{j=1}^N A_j x(t - Lambda_j) + B u(t)$ in $L^2$, with $x(t) in mathbb C^d$ and $u(t) in mathbb C^m$, using as a basic tool a representation for
This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $
We study one-parametric perturbations of finite dimensional real Hamiltonians depending on two controls, and we show that generically in the space of Hamiltonians, conical intersections of eigenvalues can degenerate into semi-conical intersections of
We propose a numerical method to approximate the exact averaged boundary control of a family of wave equations depending on an unknown parameter sigma. More precisely the control, independent of sigma, that drives an initial data to a family of final