ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric mass ratios for bright double neutron-star mergers

119   0   0.0 ( 0 )
 نشر من قبل Robert Ferdman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. D. Ferdman




اسأل ChatGPT حول البحث

The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electromagnetic emission are in tension with the expectations from standard neutron-star merger models. Although the large measured ejecta mass is potentially explained by a progenitor system that is asymmetric in terms of the stellar component masses, i.e. with a mass ratio $q$ of 0.7-0.8, the known Galactic population of merging double neutron star (DNS) systems (i.e. those that will coalesce within billions of years or less) has, until now, only consisted of nearly equal-mass ($q > 0.9$) binaries. PSR J1913+1102 is a DNS system in a 5-hour, low-eccentricity ($e = 0.09$) orbit, implying an orbital separation of 1.8 solar radii, with the two neutron stars predicted to coalesce in 470 million years due to gravitational-wave emission. Here we report that the masses of the two neutron stars, as measured by a dedicated pulsar timing campaign, are $1.62 pm 0.03$ and $1.27 pm 0.03$ solar masses for the pulsar and companion neutron star, respectively; with a measured mass ratio $q = 0.78 pm 0.03$, it is the most asymmetric DNS among known merging systems. Based on this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30% (90% confidence) of the total population of merging DNS binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.

قيم البحث

اقرأ أيضاً

Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by th e same equation of state, and their Lambdas are highly correlated through their masses even if the equation of state is unknown. If, however, a strong phase transition exists between the central densities of the two stars, so that the more massive star has a phase transition and the least massive star does not, this correlation will be weakened. In all cases, a minimum Lambda for each neutron star mass is imposed by causality, and a less conservative limit is imposed by the unitary gas constraint, both of which we compute. In order to make the best use of gravitational wave data from mergers, it is important to include the correlations relating the Lambdas and the masses as well as lower limits to the Lambdas as a function of mass. Focusing on the case without strong phase transitions, and for mergers where the chirp mass M_chirp<1.4M_sun, which is the case for all observed double neutron star systems where a total mass has been accurately measured, we show that the dimensionless Lambdas satisfy Lambda_1/Lambda_2= q^6, where q=M_2/M_1 is the binary mass ratio; $M$ is mass of each star, respectively. Moreover, they are bounded by q^{n_-}>Lambda_1/Lambda_2> q^{n_{0+}+qn_{1+}}, where n_-<n_{0+}+qn_{1+}; the parameters depend only on M_chirp, which is accurately determined from the gravitational-wave signal. We also provide analytic expressions for the wider bounds that exist in the case of a strong phase transition. We argue that bounded ranges for Lambda_1/Lambda_2, tuned to M_chirp, together with lower bounds to Lambda(M), will be more useful in gravitational waveform modeling than other suggested approaches.
The threshold mass for prompt collapse in binary neutron star mergers was empirically found to depend on the stellar properties of the maximum-mass non-rotating neutron star model. Here we present a semi-analytic derivation of this empirical relation which suggests that it is rather insensitive to thermal effects, to deviations from axisymmetry and to the exact rotation law in merger remnants. We utilize axisymmetric, cold equilibrium models with differential rotation and determine the threshold mass for collapse from the comparison between an empirical relation that describes the angular momentum in the remnant for a given total binary mass and the sequence of rotating equilibrium models at the threshold to collapse (the latter assumed to be near the turning point of fixed-angular-momentum sequences). In spite of the various simplifying assumptions, the empirical relation for prompt collapse is reproduced with good accuracy, which demonstrates its robustness. We discuss implications of our methodology and results for understanding other empirical relations satisfied by neutron-star merger remnants that have been discovered by numerical simulations and that play a key role in constraining the high-density equation of state through gravitational-wave observations.
The recent detection of gravitational waves and electromagnetic counterparts from the double neutron star merger event GW+EM170817, supports the standard paradigm of short gamma-ray bursts (SGRBs) and kilonovae/macronovae. It is important to reveal t he nature of the compact remnant left after the merger, either a black hole or neutron star, and their physical link to the origin of the long-lasting emission observed in SGRBs. The diversity of the merger remnants may also lead to different kinds of transients that can be detected in future. Here we study the high-energy emission from the long-lasting central engine left after the coalescence, under certain assumptions. In particular, we consider the X-ray emission from a remnant disk and the non-thermal nebular emission from disk-driven outflows or pulsar winds. We demonstrate that late-time X-ray and high-frequency radio emission can provide useful constraints on properties of the hidden compact remnants and their connections to long-lasting SGRB emission, and we discuss the detectability of nearby merger events through late-time observations at $sim30-100$ d after the coalescence. We also investigate the GeV-TeV gamma-ray emission that occurs in the presence of long-lasting central engines, and show the importance of external inverse-Compton radiation due to up-scattering of X-ray photons by relativistic electrons in the jet. We also search for high-energy gamma-rays from GW170817 in the Fermi-LAT data, and report upper limits on such long-lasting emission. Finally, we consider the implications of GW+EM170817 and discuss the constraints placed by X-ray and high-frequency radio observations.
To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to h ave a mass ratio close to unity (q $geq$ 0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5) $M_{odot}$ and that of its companion is 1.174(4) $M_{odot}$; q = 0.75. If this companion is also a neutron star (NS), as indicated by the orbital eccentricity of the system (e=0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin derivative of 1.8616(7) x$10^-19$; from these we derive a characteristic age of ~ 4.1 x $10^9$ years and a magnetic field of ~ 2.9 x $10^9$ G,i.e, this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during a NS-NS merger: it is now evident that we should not assume all DNS systems are symmetric.
We investigate mass ejection from accretion disks formed in mergers of black holes (BHs) and neutron stars (NSs). The third observing run of the LIGO/Virgo interferometers provided BH-NS candidate events that yielded no electromagnetic (EM) counterpa rts. The broad range of disk configurations expected from BH-NS mergers motivates a thorough exploration of parameter space to improve EM signal predictions. Here we conduct 27 high-resolution, axisymmetric, long-term hydrodynamic simulations of the viscous evolution of BH accretion disks that include neutrino emission/absorption effects and post-processing with a nuclear reaction network. In the absence of magnetic fields, these simulations provide a lower-limit to the fraction of the initial disk mass ejected. We find a nearly linear inverse dependence of this fraction on disk compactness (BH mass over initial disk radius). The dependence is related to the fraction of the disk mass accreted before the outflow is launched, which depends on the disk position relative to the innermost stable circular orbit. We also characterize a trend of decreasing ejected fraction and decreasing lanthanide/actinide content with increasing disk mass at fixed BH mass. This trend results from a longer time to reach weak freezout and an increasingly dominant role of neutrino absorption at higher disk masses. We estimate the radioactive luminosity from the disk outflow alone available to power kilonovae over the range of configurations studied, finding a spread of two orders of magnitude. For most of the BH-NS parameter space, the disk outflow contribution is well below the kilonova mass upper limits for GW190814.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا