ﻻ يوجد ملخص باللغة العربية
The recent detection of gravitational waves and electromagnetic counterparts from the double neutron star merger event GW+EM170817, supports the standard paradigm of short gamma-ray bursts (SGRBs) and kilonovae/macronovae. It is important to reveal the nature of the compact remnant left after the merger, either a black hole or neutron star, and their physical link to the origin of the long-lasting emission observed in SGRBs. The diversity of the merger remnants may also lead to different kinds of transients that can be detected in future. Here we study the high-energy emission from the long-lasting central engine left after the coalescence, under certain assumptions. In particular, we consider the X-ray emission from a remnant disk and the non-thermal nebular emission from disk-driven outflows or pulsar winds. We demonstrate that late-time X-ray and high-frequency radio emission can provide useful constraints on properties of the hidden compact remnants and their connections to long-lasting SGRB emission, and we discuss the detectability of nearby merger events through late-time observations at $sim30-100$ d after the coalescence. We also investigate the GeV-TeV gamma-ray emission that occurs in the presence of long-lasting central engines, and show the importance of external inverse-Compton radiation due to up-scattering of X-ray photons by relativistic electrons in the jet. We also search for high-energy gamma-rays from GW170817 in the Fermi-LAT data, and report upper limits on such long-lasting emission. Finally, we consider the implications of GW+EM170817 and discuss the constraints placed by X-ray and high-frequency radio observations.
Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electro
Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by th
Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on b
The gravitational-wave detectors LIGO and Virgo together with their electromagnetic partner facilities have transformed the modus operandi in which we seek information about the Universe. The first ever-observed neutron-star merger---GW170817---confi