ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron star mergers

103   0   0.0 ( 0 )
 نشر من قبل Andreas Bauswein
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The threshold mass for prompt collapse in binary neutron star mergers was empirically found to depend on the stellar properties of the maximum-mass non-rotating neutron star model. Here we present a semi-analytic derivation of this empirical relation which suggests that it is rather insensitive to thermal effects, to deviations from axisymmetry and to the exact rotation law in merger remnants. We utilize axisymmetric, cold equilibrium models with differential rotation and determine the threshold mass for collapse from the comparison between an empirical relation that describes the angular momentum in the remnant for a given total binary mass and the sequence of rotating equilibrium models at the threshold to collapse (the latter assumed to be near the turning point of fixed-angular-momentum sequences). In spite of the various simplifying assumptions, the empirical relation for prompt collapse is reproduced with good accuracy, which demonstrates its robustness. We discuss implications of our methodology and results for understanding other empirical relations satisfied by neutron-star merger remnants that have been discovered by numerical simulations and that play a key role in constraining the high-density equation of state through gravitational-wave observations.

قيم البحث

اقرأ أيضاً

Using hydrodynamical simulations for a large set of high-density matter equations of state (EoSs) we systematically determine the threshold mass M_thres for prompt black-hole formation in equal-mass and asymmetric neutron star (NS) mergers. We devise the so far most direct, general and accurate method to determine the unknown maximum mass of nonrotating NSs from merger observations revealing M_thres. Considering hybrid EoSs with hadron-quark phase transition, we identify a new, observable signature of quark matter in NS mergers. Furthermore, our findings have direct applications in gravitational wave searches, kilonova interpretations and multi-messenger constraints on NS properties.
The main features of the gravitational dynamics of binary neutron star systems are now well established. While the inspiral can be precisely described in the post-Newtonian approximation, fully relativistic magneto-hydrodynamical simulations are requ ired to model the evolution of the merger and post-merger phase. However, the interpretation of the numerical results can often be non-trivial, so that toy models become a very powerful tool. Not only do they simplify the interpretation of the post-merger dynamics, but also allow to gain insights into the physics behind it. In this work, we construct a simple toy model that is capable of reproducing the whole angular momentum evolution of the post-merger remnant, from the merger to the collapse. We validate the model against several fully general-relativistic numerical simulations employing a genetic algorithm, and against additional constraints derived from the spectral properties of the gravitational radiation. As a result, from the remarkably close overlap between the model predictions and the reference simulations within the first milliseconds after the merger, we are able to systematically shed light on the currently open debate regarding the source of the low-frequency peaks of the gravitational wave power spectral density. Additionally, we also present two original relations connecting the angular momentum of the post-merger remnant at merger and collapse to initial properties of the system.
118 - R. D. Ferdman 2020
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electro magnetic emission are in tension with the expectations from standard neutron-star merger models. Although the large measured ejecta mass is potentially explained by a progenitor system that is asymmetric in terms of the stellar component masses, i.e. with a mass ratio $q$ of 0.7-0.8, the known Galactic population of merging double neutron star (DNS) systems (i.e. those that will coalesce within billions of years or less) has, until now, only consisted of nearly equal-mass ($q > 0.9$) binaries. PSR J1913+1102 is a DNS system in a 5-hour, low-eccentricity ($e = 0.09$) orbit, implying an orbital separation of 1.8 solar radii, with the two neutron stars predicted to coalesce in 470 million years due to gravitational-wave emission. Here we report that the masses of the two neutron stars, as measured by a dedicated pulsar timing campaign, are $1.62 pm 0.03$ and $1.27 pm 0.03$ solar masses for the pulsar and companion neutron star, respectively; with a measured mass ratio $q = 0.78 pm 0.03$, it is the most asymmetric DNS among known merging systems. Based on this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30% (90% confidence) of the total population of merging DNS binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.
Recent detailed 1D core-collapse simulations have brought new insights on the final fate of massive stars, which are in contrast to commonly used parametric prescriptions. In this work, we explore the implications of these results to the formation of coalescing black-hole (BH) - neutron-star (NS) binaries, such as the candidate event GW190426_152155 reported in GWTC-2. Furthermore, we investigate the effects of natal kicks and the NSs radius on the synthesis of such systems and potential electromagnetic counterparts linked to them. Synthetic models based on detailed core-collapse simulations result in an increased merger detection rate of BH-NS systems ($sim 2.3$ yr$^{-1}$), 5 to 10 times larger than the predictions of standard parametric prescriptions. This is primarily due to the formation of low-mass BH via direct collapse, and hence no natal kicks, favored by the detailed simulations. The fraction of observed systems that will produce an electromagnetic counterpart, with the detailed supernova engine, ranges from $2$-$25$%, depending on uncertainties in the NS equation of state. Notably, in most merging systems with electromagnetic counterparts, the NS is the first-born compact object, as long as the NSs radius is $lesssim 12,mathrm{km}$. Furthermore, core-collapse models that predict the formation of low-mass BHs with negligible natal kicks increase the detection rate of GW190426_152155-like events to $sim 0.6 , $yr$^{-1}$; with an associated probability of electromagnetic counterpart $leq 10$% for all supernova engines. However, increasing the production of direct-collapse low-mass BHs also increases the synthesis of binary BHs, over-predicting their measured local merger density rate. In all cases, models based on detailed core-collapse simulation predict a ratio of BH-NSs to binary BHs merger rate density that is at least twice as high as other prescriptions.
Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by th e same equation of state, and their Lambdas are highly correlated through their masses even if the equation of state is unknown. If, however, a strong phase transition exists between the central densities of the two stars, so that the more massive star has a phase transition and the least massive star does not, this correlation will be weakened. In all cases, a minimum Lambda for each neutron star mass is imposed by causality, and a less conservative limit is imposed by the unitary gas constraint, both of which we compute. In order to make the best use of gravitational wave data from mergers, it is important to include the correlations relating the Lambdas and the masses as well as lower limits to the Lambdas as a function of mass. Focusing on the case without strong phase transitions, and for mergers where the chirp mass M_chirp<1.4M_sun, which is the case for all observed double neutron star systems where a total mass has been accurately measured, we show that the dimensionless Lambdas satisfy Lambda_1/Lambda_2= q^6, where q=M_2/M_1 is the binary mass ratio; $M$ is mass of each star, respectively. Moreover, they are bounded by q^{n_-}>Lambda_1/Lambda_2> q^{n_{0+}+qn_{1+}}, where n_-<n_{0+}+qn_{1+}; the parameters depend only on M_chirp, which is accurately determined from the gravitational-wave signal. We also provide analytic expressions for the wider bounds that exist in the case of a strong phase transition. We argue that bounded ranges for Lambda_1/Lambda_2, tuned to M_chirp, together with lower bounds to Lambda(M), will be more useful in gravitational waveform modeling than other suggested approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا