ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

179   0   0.0 ( 0 )
 نشر من قبل Yuanhang Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.



قيم البحث

اقرأ أيضاً

Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users preferences are estimated based on past obs erved behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passa ge comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate r equests from users, while lack proactive guidance to the recommendation scenario. In this paper, we contribute a new CRS dataset named textbf{TG-ReDial} (textbf{Re}commendation through textbf{T}opic-textbf{G}uided textbf{Dial}og). Our dataset has two major features. First, it incorporates topic threads to enforce natural semantic transitions towards the recommendation scenario. Second, it is created in a semi-automatic way, hence human annotation is more reasonable and controllable. Based on TG-ReDial, we present the task of topic-guided conversational recommendation, and propose an effective approach to this task. Extensive experiments have demonstrated the effectiveness of our approach on three sub-tasks, namely topic prediction, item recommendation and response generation. TG-ReDial is available at https://github.com/RUCAIBox/TG-ReDial.
In this work, we propose a novel goal-oriented dialog task, automatic symptom detection. We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically, which can save a doctors time interviewin g the patient. Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions, in order to collect more information for making an accurate diagnosis. After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis. To achieve this goal, we propose two neural models and a training pipeline for the multi-step reasoning task. We also build a knowledge graph as additional inputs to further improve model performance. Experiments show that our model significantly outperforms the baseline by 4%, discovering 67% of implicit symptoms on average with a limited number of questions.
Knowledge Graph (KG) alignment aims at finding equivalent entities and relations (i.e., mappings) between two KGs. The existing approaches utilize either reasoning-based or semantic embedding-based techniques, but few studies explore their combinatio n. In this demonstration, we present PRASEMap, an unsupervised KG alignment system that iteratively computes the Mappings with both Probabilistic Reasoning (PR) And Semantic Embedding (SE) techniques. PRASEMap can support various embedding-based KG alignment approaches as the SE module, and enables easy human computer interaction that additionally provides an option for users to feed the mapping annotations back to the system for better results. The demonstration showcases these features via a stand-alone Web application with user friendly interfaces. The demo is available at https://prasemap.qizhy.com.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا