ترغب بنشر مسار تعليمي؟ اضغط هنا

Placing Grid-Forming Converters to Enhance Small Signal Stability of PLL-Integrated Power Systems

291   0   0.0 ( 0 )
 نشر من قبل Linbin Huang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The modern power grid features the high penetration of power converters, which widely employ a phase-locked loop (PLL) for grid synchronization. However, it has been pointed out that PLL can give rise to small-signal instabilities under weak grid conditions. This problem can be potentially resolved by operating the converters in grid-forming mode, namely, without using a PLL. Nonetheless, it has not been theoretically revealed how the placement of grid-forming converters enhances the small-signal stability of power systems integrated with large-scale PLL-based converters. This paper aims at filling this gap. Based on matrix perturbation theory, we explicitly demonstrate that the placement of grid-forming converters is equivalent to increasing the power grid strength and thus improving the small-signal stability of PLL-based converters. Furthermore, we investigate the optimal locations to place grid-forming converters by increasing the smallest eigenvalue of the weighted and Kron-reduced Laplacian matrix of the power network. The analysis in this paper is validated through high-fidelity simulation studies on a modified two-area test system and a modified 39-bus test system. This paper potentially lays the foundation for understanding the interaction between PLL-based (i.e., grid-following) converters and grid-forming converters, and coordinating their placements in future converter-dominated power systems.



قيم البحث

اقرأ أيضاً

The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming conve rter from the view of multivariable feedback control. As a result, many of the existing popular control strategies, i.e., droop control, power synchronization control, virtual synchronous generator control, matching control, dispatchable virtual oscillator control, and their improved forms are unified into a multivariable feedback control transfer matrix working on several linear and nonlinear error signals. Meanwhile, unlike the traditional assumptions of decoupling between AC and DC control, active power and reactive power control, the proposed configuration simultaneously takes all of them into consideration, which therefore can provide better performance. As an example, a new multi-input-multi-output-based grid-forming (MIMO-GFM) control is proposed based on the generalized configuration. To cope with the multivariable feedback, an optimal and structured $H_{infty}$ synthesis is used to design the control parameters. At last, simulation and experimental results show superior performance and robustness of the proposed configuration and control.
Small-signal instability of grid-connected power converters may arise when the converters use a phase-locked loop (PLL) to synchronize with a weak grid. Commonly, this stability problem (referred as PLL-synchronization stability in this paper) was st udied by employing a single-converter system connected to an infinite bus, which however, omits the impacts of power grid structure and the interactions among multiple converters. Motivated by this, we investigate how the grid structure affects PLL-synchronization stability of multi-converter systems. By using Kron reduction to eliminate the interior nodes, an equivalent reduced network is obtained which contains only the converter nodes. We explicitly show how the Kron-reduced multi-converter system can be decoupled into its modes. This modal representation allows us to demonstrate that the smallest eigenvalue of the grounded Laplacian matrix of the Kron-reduced network dominates the stability margin. We also carry out a sensitivity analysis of this smallest eigenvalue to explore how a perturbation in the original network affects the stability margin. On this basis, we provide guidelines on how to improve the PLL-synchronization stability of multi-converter systems by PLL-retuning, proper placement of converters or enhancing some weak connection in the network. Finally, we validate our findings with simulation results based on a 39-bus test system.
147 - Yuan Gao , Hai-Peng Ren , Jie Li 2020
The renewable energy is connected to the power grid through power electronic converters, which are lack of make the inertia of synchronous generator/machine (SM) be lost. The increasing penetration of renewable energy in power system weakens the freq uency and voltage stability. The Grid-Forming Converters (GFCs) simulate the function of synchronous motor through control method in order to improve the stability of power grid by providing inertia and stability regulation mechanism. This kind of converter control methods include virtual synchronous machine, schedulable virtual oscillator control and so on. These control method mainly use AC side state feedback and do not monitor the DC side state. This paper analyzes the control strategy of GFC considering power grid stability, including Frequency Droop Control, Virtual Synchronous Machine Control and dispatchable Virtual Oscillator Control. The DC side voltage collapse problem is found when a large load disturbance occurs. The control methods of GFC considering DC side voltage feedback are proposed, which can ensure the synchronization characteristics of grid connection and solve the problem of DC side voltage collapse. The proposed method is verified by IEEE-9 bus system, which shows the effectiveness of the proposed method.
Having sufficient grid-forming sources is one of the necessary conditions to guarantee the stability in a power system hosting a very large share of inverter-based generation. The grid-forming function has been historically fulfilled by synchronous m achines. However, with the appropriate control, it can also be provided by voltage source converters (VSC). This work presents a comparison between two technologies with grid-forming capability: the VSC with a grid-forming control coupled with an adequate energy storage system, and the synchronous condensers (SC). Both devices are compared regarding their inertial response, as well as their contribution to the system strength and short-circuit current for an equivalent capacity expressed in terms of apparent power and inertial reserve. Their behaviour following grid disturbances is assessed through time-domain simulations based on detailed electromagnetic transient (EMT) models. The results show that both devices achieve similar performance in the time-scale of seconds. For shorter time-windows, however, they present a different behavior: the SC ensures a better stiffness in the first tens of ms following the disturbance, while the VSC offers a faster resynchronization.
The modern power system features high penetration of power converters due to the development of renewables, HVDC, etc. Currently, the controller design and parameter tuning of power converters heavily rely on rich engineering experience and extrapola tion from a single converter system, which may lead to inferior performance or even instabilities under variable grid conditions. In this paper, we propose an $H_{infty}$-control design framework to provide a systematic way for the robust and optimal control design of power converters. We discuss how to choose weighting functions to achieve anticipated and robust performance with regards to multiple control objectives. Further, we show that by a proper choice of the weighting functions, the converter can be conveniently specified as grid-forming or grid-following in terms of small-signal dynamics. Moreover, this paper first proposes a decentralized stability criterion based on the small gain theorem, which enables us to guarantee the global small-signal stability of a multi-converter system through local control design of the power converters. We provide high-fidelity nonlinear simulations and hardware-in-the-loop (HIL) real-time simulations to illustrate the effectiveness of our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا