ﻻ يوجد ملخص باللغة العربية
Having sufficient grid-forming sources is one of the necessary conditions to guarantee the stability in a power system hosting a very large share of inverter-based generation. The grid-forming function has been historically fulfilled by synchronous machines. However, with the appropriate control, it can also be provided by voltage source converters (VSC). This work presents a comparison between two technologies with grid-forming capability: the VSC with a grid-forming control coupled with an adequate energy storage system, and the synchronous condensers (SC). Both devices are compared regarding their inertial response, as well as their contribution to the system strength and short-circuit current for an equivalent capacity expressed in terms of apparent power and inertial reserve. Their behaviour following grid disturbances is assessed through time-domain simulations based on detailed electromagnetic transient (EMT) models. The results show that both devices achieve similar performance in the time-scale of seconds. For shorter time-windows, however, they present a different behavior: the SC ensures a better stiffness in the first tens of ms following the disturbance, while the VSC offers a faster resynchronization.
The renewable energy is connected to the power grid through power electronic converters, which are lack of make the inertia of synchronous generator/machine (SM) be lost. The increasing penetration of renewable energy in power system weakens the freq
In order to improve dynamic characteristics of the power system with high-proportion renewable energy sources (RESs), it is necessary for the voltage source converter (VSC), interfaces of RESs, to provide inertial and frequency regulation. In practic
The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming conve
In this paper, a novel model-free wide-area damping control (WADC) method is proposed, which can achieve full decoupling of modes and damp multiple critical inter-area oscillations simultaneously using grid-connected voltage source converters (VSCs).
The modern power grid features the high penetration of power converters, which widely employ a phase-locked loop (PLL) for grid synchronization. However, it has been pointed out that PLL can give rise to small-signal instabilities under weak grid con