ﻻ يوجد ملخص باللغة العربية
We study preheating in plateau inflation in the Palatini formulation of general relativity, in a special case that resembles Higgs inflation. It was previously shown that the oscillating inflaton field returns to the plateau repeatedly in this model, and this leads to tachyonic production of inflaton particles. We show that a minimally coupled spectator scalar field can be produced even more efficiently by a similar mechanism. The mechanism is purely gravitational, and the scalar field mass can be of order $10^{13}$ GeV, larger than the Hubble scale by many orders of magnitude, making this a candidate for superheavy dark matter.
We study preheating in the Palatini formalism with a quadratic inflaton potential and an added $alpha R^2$ term. In such models, the oscillating inflaton field repeatedly returns to the plateau of the Einstein frame potential, on which the tachyonic
In this white paper, we discuss the prospects for characterizing and identifying dark matter using gravitational waves, covering a wide range of dark matter candidate types and signals. We argue that present and upcoming gravitational wave probes off
The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement
Plateau inflation is an experimentally consistent framework in which the scale of inflation can be kept relatively low. Close to the edge of the plateau, scalar perturbations are subject to a strong tachyonic instability. Tachyonic preheating is real
Stochastic gravitational wave backgrounds (SGWBs) receive increasing attention and provide a new possibility to directly probe the early Universe. In the preheating process at the end of inflation, parametric resonance can generate large energy densi