ﻻ يوجد ملخص باللغة العربية
We study preheating in the Palatini formalism with a quadratic inflaton potential and an added $alpha R^2$ term. In such models, the oscillating inflaton field repeatedly returns to the plateau of the Einstein frame potential, on which the tachyonic instability fragments the inflaton condensate within less than an e-fold. We find that tachyonic preheating takes place when $alpha gtrsim 10^{13}$ and that the energy density of the fragmented field grows with the rate $Gamma/H approx 0.011 times alpha^{0.31}$. The model extends the family of plateau models with similar preheating behaviour. Although it contains non-canonical quartic kinetic terms in the Einstein frame, we show that, in the first approximation, these can be neglected during both preheating and inflation.
Plateau inflation is an experimentally consistent framework in which the scale of inflation can be kept relatively low. Close to the edge of the plateau, scalar perturbations are subject to a strong tachyonic instability. Tachyonic preheating is real
It has recently been suggested that the Standard Model Higgs boson could act as the inflaton while minimally coupled to gravity - given that the gravity sector is extended with an $alpha R^2$ term and the underlying theory of gravity is of Palatini,
We study preheating in plateau inflation in the Palatini formulation of general relativity, in a special case that resembles Higgs inflation. It was previously shown that the oscillating inflaton field returns to the plateau repeatedly in this model,
We analyze and compare the multi-field dynamics during inflation and preheating in symmetric and asymmetric models of $alpha$-attractors, characterized by a hyperbolic field-space manifold. We show that the generalized (asymmetric) E- and (symmetric)
In the framework of classical scale invariance, we consider quadratic gravity in the Palatini formalism and investigate the inflationary predictions of the theory. Our model corresponds to a two-field scalar-tensor theory, that involves the Higgs fie