ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of the amplitude of gravitational waves from preheating on the inflationary energy scale

217   0   0.0 ( 0 )
 نشر من قبل Jing Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic gravitational wave backgrounds (SGWBs) receive increasing attention and provide a new possibility to directly probe the early Universe. In the preheating process at the end of inflation, parametric resonance can generate large energy density perturbations and efficiently produce gravitational waves (GWs) which carry unique information about inflation. Since the peak frequency of such GWs is approximately proportional to the inflationary energy scale, $Lambda_{mathrm{inf}}$, GWs from preheating are expected to be observed by interferometer GW detectors in low-scale inflationary models. We investigate the dependence of the amplitude of such GWs on $Lambda_{mathrm{inf}}$, and find that the present energy spectrum of these GWs does not depend on $Lambda_{mathrm{inf}}$ only in the case of $Lambda_{mathrm{inf}}$ is above a critical value $Lambda_{c}$, a parameter depending on the resonance strength. We numerically obtain $Lambda_{c}$ in terms of the model parameters in linear approximation and then conduct lattice simulations to verify this result. For $Lambda_{mathrm{inf}}lesssimLambda_{c}$, the amplitude of GWs quickly decreases with $Lambda_{mathrm{inf}}$ and becomes challenging to observe. In turn, observing such GWs in interferometer detectors also helps to determine $Lambda_{mathrm{inf}}$ and the resonance strength during the preheating.



قيم البحث

اقرأ أيضاً

148 - Aniket Agrawal 2018
We demonstrate equivalence of the in-in formalism and Greens function method for calculating the bispectrum of primordial gravitational waves generated by vacuum fluctuations of the metric. The tree-level bispectrum from the field equation, $B_h$, ag rees with the results obtained previously using the in-in formalism exactly. Characterising non-Gaussianity of the fluctuations using the ratio $B_h/P^2_h$ in the equilateral configuration, where $P_h$ is the power spectrum of scale-invariant gravitational waves, we show that it is much weaker than in models with spectator gauge fields. We also calculate the tree-level bispectrum of two right-handed and one left-handed gravitational wave using Greens function, reproducing the results from in-in formalism, and show that it can be as large as the bispectrum of three right-handed gravitational waves.
62 - Pierre G. Auclair 2020
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than $H_0(Gamma Gmu)^{-1}$ where $Gamma$ is of order $50$ and $H_0$ is the Hubble constant. We propose a complete classification of the gravitational wave power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of gravitational wave power spectrum can be considered giving very different predictions for the SBGW.
We present three-dimensional direct numerical simulations of the production of magnetic fields and gravitational waves (GWs) in the early Universe during a low energy scale matter-dominated post-inflationary reheating era, and during the early subseq uent radiative era, which is strongly turbulent. The parameters of the model are determined such that it avoids a number of known physical problems and produces magnetic energy densities between 0.2% and 2% of the critical energy density at the end of reheating. During the subsequent development of a turbulent magnetohydrodynamic cascade, magnetic fields and GWs develop a spectrum that extends to higher frequencies in the millihertz (nanohertz) range for models with reheating temperatures of around 100 GeV (150 MeV) at the beginning of the radiation-dominated era. However, even though the turbulent cascade is fully developed, the GW spectrum shows a sharp drop for frequencies above the peak value. This suggests that the turbulence is less efficient in driving GWs than previously thought. The peaks of the resulting GW spectra may well be in the range accessible to space interferometers, pulsar timing arrays, and other facilities.
The prospects for direct measurements of inflationary gravitational waves by next generation interferometric detectors inferred from the possible detection of B-mode polarization of the cosmic microwave background are studied. We compute the spectra of the gravitational wave background and the signal-to-noise ratios by two interferometric detectors (DECIGO and BBO) for large-field inflationary models in which the tensor-to-scalar ratio is greater than the order of 0.01. If the reheating temperature $T_{rm RH}$ of chaotic inflation with the quadratic potential is high ($T_{rm RH}>7.9times10^6$ GeV for upgraded DECIGO and $T_{rm RH}> 1.8times 10^{6}$ GeV for BBO), it will be possible to reach the sensitivity of the gravitational background in future experiments at $3sigma$ confidence level. The direct detection is also possible for natural inflation with the potential $V(phi)=Lambda^4 [1-cos(phi/f)]$, provided that $f>4.2 M_{rm pl}$ (upgraded DECIGO) and $f>3.6 M_{rm pl}$ (BBO) with $T_{rm RH}$ higher than $10^8$ GeV. The quartic potential $V(phi)=lambda phi^4/4$ with a non-minimal coupling $xi$ between the inflaton field $phi$ and the Ricci scalar $R$ gives rise to a detectable level of gravitational waves for $|xi|$ smaller than the order of 0.01, irrespective of the reheating temperature.
Using numerical simulations of helical inflationary magnetogenesis in a low reheating temperature scenario, we show that the magnetic energy spectrum is strongly peaked at a particular wavenumber that depends on the reheating temperature. Gravitation al waves (GWs) are produced at frequencies between 3 nHz and 50 mHz for reheating temperatures between 150 MeV and 3x10^5 GeV, respectively. At and below the peak frequency, the stress spectrum is always found to be that of white noise. This implies a linear increase of GW energy per logarithmic wavenumber interval, instead of a cubic one, as previously thought. Both in the helical and nonhelical cases, the GW spectrum is followed by a sharp drop for frequencies above the respective peak frequency. In this magnetogenesis scenario, the presence of a helical term extends the peak of the GW spectrum and therefore also the position of the aforementioned drop toward larger frequencies compared to the case without helicity. This might make a difference in it being detectable with space interferometers. The efficiency of GW production is found to be almost the same as in the nonhelical case, and independent of the reheating temperature, provided the electromagnetic energy at the end of reheating is fixed to be a certain fraction of the radiation energy density. Also, contrary to the case without helicity, the electric energy is now less than the magnetic energy during reheating. The fractional circular polarization is found to be nearly hundred per cent in a certain range below the peak frequency range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا