ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning

88   0   0.0 ( 0 )
 نشر من قبل Yawen Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This work aims to enable on-device training of convolutional neural networks (CNNs) by reducing the computation cost at training time. CNN models are usually trained on high-performance computers and only the trained models are deployed to edge devices. But the statically trained model cannot adapt dynamically in a real environment and may result in low accuracy for new inputs. On-device training by learning from the real-world data after deployment can greatly improve accuracy. However, the high computation cost makes training prohibitive for resource-constrained devices. To tackle this problem, we explore the computational redundancies in training and reduce the computation cost by two complementary approaches: self-supervised early instance filtering on data level and error map pruning on the algorithm level. The early instance filter selects important instances from the input stream to train the network and drops trivial ones. The error map pruning further prunes out insignificant computations when training with the selected instances. Extensive experiments show that the computation cost is substantially reduced without any or with marginal accuracy loss. For example, when training ResNet-110 on CIFAR-10, we achieve 68% computation saving while preserving full accuracy and 75% computation saving with a marginal accuracy loss of 1.3%. Aggressive computation saving of 96% is achieved with less than 0.1% accuracy loss when quantization is integrated into the proposed approaches. Besides, when training LeNet on MNIST, we save 79% computation while boosting accuracy by 0.2%.

قيم البحث

اقرأ أيضاً

Sparsification is an efficient approach to accelerate CNN inference, but it is challenging to take advantage of sparsity in training procedure because the involved gradients are dynamically changed. Actually, an important observation shows that most of the activation gradients in back-propagation are very close to zero and only have a tiny impact on weight-updating. Hence, we consider pruning these very small gradients randomly to accelerate CNN training according to the statistical distribution of activation gradients. Meanwhile, we theoretically analyze the impact of pruning algorithm on the convergence. The proposed approach is evaluated on AlexNet and ResNet-{18, 34, 50, 101, 152} with CIFAR-{10, 100} and ImageNet datasets. Experimental results show that our training approach could substantially achieve up to $5.92 times$ speedups at back-propagation stage with negligible accuracy loss.
After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive learning has demonstrated its great potential in learning from unlabeled data. However, the online input data are usually none independent and identically distributed (non-iid) and storages of edge devices are usually too limited to store enough representative data from different data classes. We propose a framework to automatically select the most representative data from the unlabeled input stream, which only requires a small data buffer for dynamic learning. Experiments show that accuracy and learning speed are greatly improved.
We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of deep neural networks. We analyze the training dynamics of deep networks on training data that are corrupted by, e.g., random noise and adversarial examples. Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emph{any} label information, highlighting that model predictions could substantially benefit the training process: self-adaptive training improves the generalization of deep networks under noise and enhances the self-supervised representation learning. The analysis also sheds light on understanding deep learning, e.g., a potential explanation of the recently-discovered double-descent phenomenon in empirical risk minimization and the collapsing issue of the state-of-the-art self-supervised learning algorithms. Experiments on the CIFAR, STL and ImageNet datasets verify the effectiveness of our approach in three applications: classification with label noise, selective classification and linear evaluation. To facilitate future research, the code has been made public available at https://github.com/LayneH/self-adaptive-training.
Self-training is a standard approach to semi-supervised learning where the learners own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation pr oblem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm. Our code is available at https://github.com/stanford-futuredata/sinkhorn-label-allocation.
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust featur e representation so as to resist adversarial attacks. Meanwhile, the self-supervised learning aims to learn robust and semantic embedding from data itself. With these views, we introduce self-supervised learning to against adversarial examples in this paper. Specifically, the self-supervised representation coupled with k-Nearest Neighbour is proposed for classification. To further strengthen the defense ability, self-supervised adversarial training is proposed, which maximizes the mutual information between the representations of original examples and the corresponding adversarial examples. Experimental results show that the self-supervised representation outperforms its supervised version in respect of robustness and self-supervised adversarial training can further improve the defense ability efficiently.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا