ترغب بنشر مسار تعليمي؟ اضغط هنا

Network Quantum Steering

80   0   0.0 ( 0 )
 نشر من قبل Benjamin Jones
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of large-scale quantum networks promises to bring a multitude of technological applications as well as shed light on foundational topics, such as quantum nonlocality. It is particularly interesting to consider scenarios where sources within the network are statistically independent, which leads to so-called network nonlocality, even when parties perform fixed measurements. Here we promote certain parties to be trusted and introduce the notion of network steering and network local hidden state (NLHS) models within this paradigm of independent sources. In one direction, we show how results from Bell nonlocality and quantum steering can be used to demonstrate network steering. We further show that it is a genuinely novel effect, by exhibiting unsteerable states that nevertheless demonstrate network steering, based upon entanglement swapping, yielding a form of activation. On the other hand, we provide no-go results for network steering in a large class of scenarios, by explicitly constructing NLHS models.



قيم البحث

اقرأ أيضاً

Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, tha t temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering.
Quantum steering, loosely speaking the distribution of entanglement from an untrusted party, is a form of quantum nonlocality which is intermediate between entanglement and Bell nonlocality. Determining which states can be steered is important from a conceptual point of view, but also for applications, e.g. in quantum cryptography. Here we show that bound entanglement, although it represents the weakest form of entanglement, can nevertheless lead to quantum steering. This is done by noticing that steering inequalities can be derived from entropic uncertainty relations. Our result has implications on the connection between entanglement distillability and nonlocality, and shows that bound entangled states can be useful for information-theoretic tasks featuring an untrusted party.
High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems, offering significant advantages for quantum information processing. Certifying these stronger correlations, however, remains an important challenge, in particular in an experimental setting. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum steering. We show that high-dimensional entanglement, as quantified by the Schmidt number, can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive simple two-setting steering inequalities, the violation of which guarantees the presence of genuine high-dimensional steering, and hence certifies a lower bound on the Schmidt number in a one-sided device-independent setting. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering. In particular, using an entangled state in dimension $d=31$, our data certifies a minimum Schmidt number of $n=15$.
As two valuable quantum resources, Einstein-Podolsky-Rosen entanglement and steering play important roles in quantum-enhanced communication protocols. Distributing such quantum resources among multiple remote users in a network is a crucial precondit ion underlying various quantum tasks. We experimentally demonstrate the deterministic distribution of two- and three-mode Gaussian entanglement and steering by transmitting separable states in a network consisting of a quantum server and multiple users. In our experiment, entangled states are not prepared solely by the quantum server, but are created among independent users during the distribution process. More specifically, the quantum server prepares separable squeezed states and applies classical displacements on them before spreading out, and users simply perform local beam-splitter operations and homodyne measurements after they receive separable states. We show that the distributed Gaussian entanglement and steerability are robust against channel loss. Furthermore, one-way Gaussian steering is achieved among users that is useful for further directional or highly asymmetric quantum information processing.
We show that optomechanical systems in the quantum regime can be used to demonstrate EPR-type quantum entanglement between the optical field and the mechanical oscillator, via quantum-state steering. Namely, the conditional quantum state of the mecha nical oscillator can be steered into different quantum states depending the choice made on which quadrature of the out-going field is to be measured via homodyne detection. More specifically, if quantum radiation pressure force dominates over thermal force, the oscillators quantum state is steerable with a photodetection efficiency as low as 50%, approaching the ideal limit shown by Wiseman and Gambetta [Phys. Rev. Lett. {bf 108}, 220402 (2012)]. We also show that requirement for steerability is the same as those for achieving sub-Heisenberg state tomography using the same experimental setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا