ترغب بنشر مسار تعليمي؟ اضغط هنا

Go local: The key to controlling the COVID-19 pandemic in the post lockdown era

183   0   0.0 ( 0 )
 نشر من قبل Rachel McKendry
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The UK government announced its first wave of lockdown easing on 10 May 2020, two months after the non-pharmaceutical measures to reduce the spread of COVID-19 were first introduced on 23 March 2020. Analysis of reported case rate data from Public Health England and aggregated and anonymised crowd level mobility data shows variability across local authorities in the UK. A locality-based approach to lockdown easing is needed, enabling local public health and associated health and social care services to rapidly respond to emerging hotspots of infection. National level data will hide an increasing heterogeneity of COVID-19 infections and mobility, and new ways of real-time data presentation to the public are required. Data sources (including mobile) allow for faster visualisation than more traditional data sources, and are part of a wider trend towards near real-time analysis of outbreaks needed for timely, targeted local public health interventions. Real time data visualisation may give early warnings of unusual levels of activity which warrant further investigation by local public health authorities.



قيم البحث

اقرأ أيضاً

73 - Tong Yang , Kai Shen , Sixuan He 2020
Timely, creditable, and fine-granular case information is vital for local communities and individual citizens to make rational and data-driven responses to the COVID-19 pandemic. This paper presents CovidNet, a COVID-19 tracking project associated wi th a large scale epidemic dataset, which was initiated by 1Point3Acres. To the best of our knowledge, the project is the only platform providing real-time global case information of more than 4,124 sub-divisions from over 27 countries worldwide with multi-language supports. The platform also offers interactive visualization tools to analyze the full historical case curves in each region. Initially launched as a voluntary project to bridge the data transparency gap in North America in January 2020, this project by far has become one of the major independent sources worldwide and has been consumed by many other tracking platforms. The accuracy and freshness of the dataset is a result of the painstaking efforts from our voluntary teamwork, crowd-sourcing channels, and automated data pipelines. As of May 18, 2020, the project website has been visited more than 200 million times and the CovidNet dataset has empowered over 522 institutions and organizations worldwide in policy-making and academic researches. All datasets are openly accessible for non-commercial purposes at https://coronavirus.1point3acres.com via a formal request through our APIs.
COVID-19 has resulted in a worldwide pandemic, leading to lockdown policies and social distancing. The pandemic has profoundly changed the world. Traditional methods for observing these historical events are difficult because sending reporters to are as with many infected people can put the reporters lives in danger. New technologies are needed for safely observing responses to these policies. This paper reports using thousands of network cameras deployed worldwide for the purpose of witnessing activities in response to the policies. The network cameras can continuously provide real-time visual data (image and video) without human efforts. Thus, network cameras can be utilized to observe activities without risking the lives of reporters. This paper describes a project that uses network cameras to observe responses to governments policies during the COVID-19 pandemic (March to April in 2020). The project discovers over 30,000 network cameras deployed in 110 countries. A set of computer tools are created to collect visual data from network cameras continuously during the pandemic. This paper describes the methods to discover network cameras on the Internet, the methods to collect and manage data, and preliminary results of data analysis. This project can be the foundation for observing the possible second wave in fall 2020. The data may be used for post-pandemic analysis by sociologists, public health experts, and meteorologists.
The COVID-19 pandemic has transformed mobile health applications and telemedicine from nice to have tools into essential healthcare infrastructure. This need is particularly great for the elderly who, due to their greater risk for infection, may avoi d medical facilities or be required to self-isolate. These are also the very groups at highest risk for cognitive decline. For example, during the COVID-19 pandemic artificially intelligent conversational agents were employed by hospitals and government agencies (such as the CDC) to field queries from patients about symptoms and treatments. Digital health tools also proved invaluable to provide neuropsychiatric and psychological self-help to people isolated at home or in retirement centers and nursing homes.
Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic infectious diseases, not only is an epidemic biological; there is also the potential for three psycho-social epidemics: of fear, moralization, and action. This work empirically tests Strongs model at scale by studying the use of language of 122M tweets related to the COVID-19 pandemic posted in the U.S. during the whole year of 2020. On Twitter, we identified three distinct phases. Each of them is characterized by different regimes of the three psycho-social epidemics. In the refusal phase, users refused to accept reality despite the increasing number of deaths in other countries. In the anger phase (started after the announcement of the first death in the country), users fear translated into anger about the looming feeling that things were about to change. Finally, in the acceptance phase, which began after the authorities imposed physical-distancing measures, users settled into a new normal for their daily activities. Overall, refusal of accepting reality gradually died off as the year went on, while acceptance increasingly took hold. During 2020, as cases surged in waves, so did anger, re-emerging cyclically at each wave. Our real-time operationalization of Strongs model is designed in a way that makes it possible to embed epidemic psychology into real-time models (e.g., epidemiological and mobility models).
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju stment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا