ترغب بنشر مسار تعليمي؟ اضغط هنا

The Multi-faceted Inverted Harmonic Oscillator: Chaos and Complexity

229   0   0.0 ( 0 )
 نشر من قبل Shajid Haque
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The harmonic oscillator is the paragon of physical models; conceptually and computationally simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum field theory. This multifaceted nature extends also to its inverted counterpart, in which the oscillator frequency is analytically continued to pure imaginary values. In this article we probe the inverted harmonic oscillator (IHO) with recently developed quantum chaos diagnostics such as the out-of-time-order correlator (OTOC) and the circuit complexity. In particular, we study the OTOC for the displacement operator of the IHO with and without a non-Gaussian cubic perturbation to explore genuine and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov spectrum for the inverted oscillator, finding a paired structure among the Lyapunov exponents. We also use the Heisenberg group to compute the complexity for the time evolved displacement operator, which displays chaotic behaviour. Finally, we extended our analysis to N-inverted harmonic oscillators to study the behaviour of complexity at the different timescales encoded in dissipation, scrambling and asymptotic regimes.



قيم البحث

اقرأ أيضاً

We provide a detailed examination of a thermal out-of-time-order correlator (OTOC) growing exponentially in time in systems without chaos. The system is a one-dimensional quantum mechanics with a potential whose part is an inverted harmonic oscillato r. We numerically observe the exponential growth of the OTOC when the temperature is higher than a certain threshold. The Lyapunov exponent is found to be of the order of the classical Lyapunov exponent generated at the hilltop, and it remains non-vanishing even at high temperature. We adopt various shape of the potential and find these features universal. The study confirms that the exponential growth of the thermal OTOC does not necessarily mean chaos when the potential includes a local maximum. We also provide a bound for the Lyapunov exponent of the thermal OTOC in generic quantum mechanics in one dimension, which is of the same form as the chaos bound obtained by Maldacena, Shenker and Stanford.
495 - H. Falomir , J. Gamboa , M. Loewe 2011
A three-dimensional harmonic oscillator with spin non-commutativity in the phase space is considered. The system has a regular symplectic structure and by using supersymmetric quantum mechanics techniques, the ground state is calculated exactly. We f ind that this state is infinitely degenerate and it has explicit spontaneous broken symmetry. Analyzing the Heisenberg equations, we show that the total angular momentum is conserved.
We compute the circuit complexity of scalar curvature perturbations on FLRW cosmological backgrounds with fixed equation of state $w$ using the language of squeezed vacuum states. Backgrounds that are accelerating and expanding, or decelerating and c ontracting, exhibit features consistent with chaotic behavior, including linearly growing complexity. Remarkably, we uncover a bound on the growth of complexity for both expanding and contracting backgrounds $lambda leq sqrt{2} |H|$, similar to other bounds proposed independently in the literature. The bound is saturated for expanding backgrounds with an equation of state more negative than $w = -5/3$, and for contracting backgrounds with an equation of state larger than $w = 1$. For expanding backgrounds that preserve the null energy condition, de Sitter space has the largest rate of growth of complexity (identified as the Lyapunov exponent), and we find a scrambling time that is similar to other estimates up to order one factors.
We study the bootstrap method in harmonic oscillators in one-dimensional quantum mechanics. We find that the problem reduces to the Diracs ladder operator problem and is exactly solvable. Thus, harmonic oscillators allow us to see how the bootstrap method works explicitly.
93 - Dmitry S. Ageev 2019
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen t different holographic complexity proposals in out-of-equilibrium CFT following the local perturbation. The second part is devoted to the chaotic growth of the local operator size at a finite chemical potential. There are numerous results stating that the chemical potential may lead to the chaos disappearance, and we confirm these results from holographic viewpoint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا