ﻻ يوجد ملخص باللغة العربية
A three-dimensional harmonic oscillator with spin non-commutativity in the phase space is considered. The system has a regular symplectic structure and by using supersymmetric quantum mechanics techniques, the ground state is calculated exactly. We find that this state is infinitely degenerate and it has explicit spontaneous broken symmetry. Analyzing the Heisenberg equations, we show that the total angular momentum is conserved.
We consider a generalised non-commutative space-time in which non-commutativity is extended to all phase space variables. If strong enough, non-commutativity can affect stability of the system. We perform stability analysis on a couple of simple exam
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropi
The harmonic oscillator is the paragon of physical models; conceptually and computationally simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum field theory. This multifaceted nature extends also to it
We study the bootstrap method in harmonic oscillators in one-dimensional quantum mechanics. We find that the problem reduces to the Diracs ladder operator problem and is exactly solvable. Thus, harmonic oscillators allow us to see how the bootstrap method works explicitly.
We examine the non-inertial effects of a rotating frame on a Dirac oscillator in a cosmic string space-time with non-commutative geometry in phase space. We observe that the approximate bound-state solutions are related to the biconfluent Heun polyno