We study the bootstrap method in harmonic oscillators in one-dimensional quantum mechanics. We find that the problem reduces to the Diracs ladder operator problem and is exactly solvable. Thus, harmonic oscillators allow us to see how the bootstrap method works explicitly.
Recently, novel numerical computation on quantum mechanics by using a bootstrap was proposed by Han, Hartnoll, and Kruthoff. We consider whether this method works in systems with a $theta$-term, where the standard Monte-Carlo computation may fail due
to the sign problem. As a starting point, we study quantum mechanics of a charged particle on a circle in which a constant gauge potential is a counterpart of a $theta$-term. We find that it is hard to determine physical quantities as functions of $theta$ such as $E(theta)$, except at $theta=0$ and $pi$. On the other hand, the correlations among observables for energy eigenstates are correctly reproduced for any $theta$. Our results suggest that the bootstrap method may work not perfectly but sufficiently well, even if a $theta$-term exists in the system.
We apply numerical conformal bootstrap techniques to the four-point function of a Weyl spinor in 4d non-supersymmetric CFTs. We find universal bounds on operator dimensions and OPE coefficients, including bounds on operators in mixed symmetry represe
ntations of the Lorentz group, which were inaccessible in previous bootstrap studies. We find discontinuities in some of the bounds on operator dimensions, and we show that they arise due to a generic yet previously unobserved fake primary effect, which is related to the existence of poles in conformal blocks. We show that this effect is also responsible for similar discontinuities found in four-fermion bootstrap in 3d, as well as in the mixed-correlator analysis of the 3d Ising CFT. As an important byproduct of our work, we develop a practical technology for numerical approximation of general 4d conformal blocks.
We bootstrap the S-matrix of massless particles in unitary, relativistic two dimensional quantum field theories. We find that the low energy expansion of such S-matrices is strongly constrained by the existence of a UV completion. In the context of f
lux tube physics, this allows us to constrain several terms in the S-matrix low energy expansion or -- equivalently -- on Wilson coefficients of several irrelevant operators showing up in the flux tube effective action. These bounds have direct implications for other physical quantities; for instance, they allow us to further bound the ground state energy as well as the level splitting of degenerate energy levels of large flux tubes. We find that the S-matrices living at the boundary of the allowed space exhibit an intricate pattern of resonances with one sharper resonance whose quantum numbers, mass and width are precisely those of the world-sheet axion proposed in [1,2]. The general method proposed here should be extendable to massless S-matrices in higher dimensions and should lead to new quantitative bounds on irrelevant operators in theories of Goldstones and also in gauge and gravity theories.
Infrared fixed points of gauge theories provide intriguing targets for the modern conformal bootstrap program. In this work we provide some preliminary evidence that a family of gauged fermionic CFTs saturate bootstrap bounds and can potentially be s
olved with the conformal bootstrap. We start by considering the bootstrap for $SO(N)$ vector 4-point functions in general dimension $D$. In the large $N$ limit, upper bounds on the scaling dimensions of the lowest $SO(N)$ singlet and traceless symmetric scalars interpolate between two solutions at $Delta =D/2-1$ and $Delta =D-1$ via generalized free field theory. In 3D the critical $O(N)$ vector models are known to saturate the bootstrap bounds and correspond to the kinks approaching $Delta =1/2$ at large $N$. We show that the bootstrap bounds also admit another infinite family of kinks ${cal T}_D$, which at large $N$ approach solutions containing free fermion bilinears at $Delta=D-1$ from below. The kinks ${cal T}_D$ appear in general dimensions with a $D$-dependent critical $N^*$ below which the kink disappears. We also study relations between the bounds obtained from the bootstrap with $SO(N)$ vectors, $SU(N)$ fundamentals, and $SU(N)times SU(N)$ bi-fundamentals. We provide a proof for the coincidence between bootstrap bounds with different global symmetries. We show evidence that the proper symmetries of the underlying theories of ${cal T}_D$ are subgroups of $SO(N)$, and we speculate that the kinks ${cal T}_D$ relate to the fixed points of gauge theories coupled to fermions.
We provide a detailed examination of a thermal out-of-time-order correlator (OTOC) growing exponentially in time in systems without chaos. The system is a one-dimensional quantum mechanics with a potential whose part is an inverted harmonic oscillato
r. We numerically observe the exponential growth of the OTOC when the temperature is higher than a certain threshold. The Lyapunov exponent is found to be of the order of the classical Lyapunov exponent generated at the hilltop, and it remains non-vanishing even at high temperature. We adopt various shape of the potential and find these features universal. The study confirms that the exponential growth of the thermal OTOC does not necessarily mean chaos when the potential includes a local maximum. We also provide a bound for the Lyapunov exponent of the thermal OTOC in generic quantum mechanics in one dimension, which is of the same form as the chaos bound obtained by Maldacena, Shenker and Stanford.