ترغب بنشر مسار تعليمي؟ اضغط هنا

Iron in X-COP: tracing enrichment in cluster outskirts with high accuracy abundance profiles

69   0   0.0 ( 0 )
 نشر من قبل Simona Ghizzardi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first metal abundance profiles for a representative sample of massive clusters. Our measures extend to $R_{500}$ and are corrected for a systematic error plaguing previous outskirt estimates. Our profiles flatten out at large radii, admittedly not a new result, however the radial range and representative nature of our sample extends its import well beyond previous findings. We find no evidence of segregation between cool-core and non-cool-core systems beyond $sim 0.3 R_{500}$, implying that, as was found for thermodynamic properties (Ghirardini et al, 2019), the physical state of the core does not affect global cluster properties. Our mean abundance within $R_{500}$ shows a very modest scatter, $< $15%, suggesting the enrichment process must be quite similar in all these massive systems. This is a new finding and has significant implications on feedback processes. Together with results from thermodynamic properties presented in a previous X-COP paper, it affords a coherent picture where feedback effects do not vary significantly from one system to another. By combing ICM with stellar measurements we have found the amount of Fe diffused in the ICM to be about ten times higher than that locked in stars. Although our estimates suggest, with some strength, that the measured iron mass in clusters is well in excess of the predicted one, systematic errors prevent us from making a definitive statement. Further advancements will only be possible when systematic uncertainties, principally those associated to stellar masses, both within and beyond $R_{500}$, can be reduced.



قيم البحث

اقرأ أيضاً

We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and SZ signal out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). Using profiles of the gas temper ature, density and pressure that have been spatially resolved out to (median value) 0.9 $R_{500}$, 1.8 $R_{500}$, and 2.3 $R_{500}$, respectively, we are able to recover the hydrostatic gravitating mass profile with several methods and using different mass models. The hydrostatic masses are recovered with a relative (statistical) median error of 3% at $R_{500}$ and 6% at $R_{200}$. By using several different methods to solve the equation of the hydrostatic equilibrium, we evaluate some of the systematic uncertainties to be of the order of 5% at both $R_{500}$ and $R_{200}$. A Navarro-Frenk-White profile provides the best-fit in nine cases out of 13, with the remaining four cases that do not show a statistically significant tension with it. The distribution of the mass concentration follows the correlations with the total mass predicted from numerical simulations with a scatter of 0.18 dex, with an intrinsic scatter on the hydrostatic masses of 0.15 dex. We compare them with the estimates of the total gravitational mass obtained through X-ray scaling relations applied to $Y_X$, gas fraction and $Y_{SZ}$, and from weak lensing and galaxy dynamics techniques, and measure a substantial agreement with the results from scaling laws, from WL at both $R_{500}$ and $R_{200}$ (with differences below 15%), from cluster velocity dispersions, but a significant tension with the caustic masses that tend to underestimate the hydrostatic masses by 40% at $R_{200}$. We also compare these measurements with predictions from alternative models to the Cold Dark Matter, like the Emergent Gravity and MOND scenarios.
We present the constraints on the helium abundance in 12 X-ray luminous galaxy clusters that have been mapped in their X-ray and Sunyaev-Zeldovich (SZ) signals out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). The unprecedented p recision available for the estimate of $H_0$ allows us to investigate how much the reconstructed X-ray and SZ signals are consistent with the expected ratio $x$ between helium and proton densities of 0.08-0.1. We find that a $H_0$ around 70 km/s/Mpc is preferred from our measurements, with lower values of $H_0$ as requested from the Planck collaboration (67 km/s/Mpc) requiring a 34% higher value of $x$. On the other hand, higher values of $H_0$, as obtained by measurements in the local universe, impose $x$, from the primordial nucleosynthesis calculations and current solar abundances, reduced by 37--44%.
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 12 nearby clusters with available XMM-Newton and Planck data. We compare our hydrostatic gas fractions with the expected universal gas fraction to constrain the level of non-thermal pressure support. We find that hydrostatic masses require little correction and infer a median non-thermal pressure fraction of $sim6%$ and $sim10%$ at $R_{500}$ and $R_{200}$, respectively. Our values are lower than the expectations of hydrodynamical simulations, possibly implying a faster thermalization of the gas. If instead we use the mass calibration adopted by the Planck team, we find that the gas fraction of massive local systems implies a mass bias $1-b=0.85pm0.05$ for SZ-derived masses, with some evidence for a mass-dependent bias. Conversely, the high bias required to match Planck CMB and cluster count cosmology is excluded by the data at high significance, unless the most massive halos are missing a substantial fraction of their baryons.
We present the joint analysis of the X-ray and SZ signals in A2319, the galaxy cluster with the highest signal-to-noise ratio in Planck maps and that has been surveyed within our XMM Cluster Outskirts Project (X-COP). We recover the thermodynamical p rofiles by the geometrical deprojection of the X-ray surface brightness, of the SZ comptonization parameter, and an accurate and robust spectroscopic measurements of the temperature. We resolve the clumpiness of the density to be below 20 per cent demonstrating that most of this clumpiness originates from the ongoing merger and can be associated to large-scale inhomogeneities. This analysis is done in azimuthally averaged radial bins and in eight independent angular sectors, enabling us to study in details the azimuthal variance of the recovered properties. Given the exquisite quality of the X-ray and SZ datasets, we constrain at $R_{200}$ the total hydrostatic mass, modelled with a NFW profile, with very high precision ($M_{200} = 9.76 pm 0.16^{stat.} pm 0.31^{syst.} times 10^{14} M_odot$). We identify the ongoing merger and how it is affecting differently the gas properties in the resolved azimuthal sectors. We have several indications that the merger has injected a high level of non-thermal pressure in this system: the clumping free density profile is above the average profile obtained by stacking Rosat observations; the gas mass fraction exceeds the expected cosmic gas fraction beyond $R_{500}$; the pressure profile is flatter than the fit obtained by the Planck collaboration; the entropy profile is flatter than the mean one predicted from non-radiative simulations; the analysis in azimuthal sectors has revealed that these deviations occur in a preferred region of the cluster. All these tensions are resolved by requiring a relative support of about 40 per cent from non-thermal to the total pressure at $R_{200}$.
The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observation al evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly-enriched gas, already present at z=2. At z>1, the gas in the present-day outskirts was distributed over tens of virial radii from the the main cluster and had been already enriched within high-redshift haloes. At z=2, about 40% of the most Fe-rich gas at z=0 was not residing in any halo more massive than 1e11 Msun/h in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse (1989). This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z>2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا