ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the Intracluster Medium out to $R_{200}$ in Abell 2319

92   0   0.0 ( 0 )
 نشر من قبل Vittorio Ghirardini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the joint analysis of the X-ray and SZ signals in A2319, the galaxy cluster with the highest signal-to-noise ratio in Planck maps and that has been surveyed within our XMM Cluster Outskirts Project (X-COP). We recover the thermodynamical profiles by the geometrical deprojection of the X-ray surface brightness, of the SZ comptonization parameter, and an accurate and robust spectroscopic measurements of the temperature. We resolve the clumpiness of the density to be below 20 per cent demonstrating that most of this clumpiness originates from the ongoing merger and can be associated to large-scale inhomogeneities. This analysis is done in azimuthally averaged radial bins and in eight independent angular sectors, enabling us to study in details the azimuthal variance of the recovered properties. Given the exquisite quality of the X-ray and SZ datasets, we constrain at $R_{200}$ the total hydrostatic mass, modelled with a NFW profile, with very high precision ($M_{200} = 9.76 pm 0.16^{stat.} pm 0.31^{syst.} times 10^{14} M_odot$). We identify the ongoing merger and how it is affecting differently the gas properties in the resolved azimuthal sectors. We have several indications that the merger has injected a high level of non-thermal pressure in this system: the clumping free density profile is above the average profile obtained by stacking Rosat observations; the gas mass fraction exceeds the expected cosmic gas fraction beyond $R_{500}$; the pressure profile is flatter than the fit obtained by the Planck collaboration; the entropy profile is flatter than the mean one predicted from non-radiative simulations; the analysis in azimuthal sectors has revealed that these deviations occur in a preferred region of the cluster. All these tensions are resolved by requiring a relative support of about 40 per cent from non-thermal to the total pressure at $R_{200}$.

قيم البحث

اقرأ أيضاً

The hot plasma in galaxy clusters is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cl usters potential well as well as non-gravitational processes such as gas cooling, AGN feedback and kinetic energy. In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius. We exploit jointly X-ray information from XMM and Sunyaev-Zeldovich constraints from Planck to recover thermodynamic properties out to 2 R500. We provide average functional forms for the radial dependence of the main quantities and quantify the slope and intrinsic scatter of the population as a function of radius. We find that gas density and pressure profiles steepen steadily with radius, in excellent agreement with previous observational results. Entropy profiles beyond R500 closely follow the predictions for the gravitational collapse of structures. The scatter in all thermodynamical quantities reaches a minimum in the range [0.2-0.8] R500 and increases outwards. Somewhat surprisingly, we find that pressure is substantially more scattered than temperature and density. Our results indicate that once accreting substructures are properly excised, the properties of the ICM beyond the cooling region R > 0.3 R500) follow remarkably well the predictions of simple gravitational collapse and require little non-gravitational corrections.
In this work, we investigate the relation between the radially-resolved thermodynamic quantities of the intracluster medium in the X-COP cluster sample, aiming to assess the stratification properties of the ICM. We model the relations between radius, gas temperature, density and pressure using a combination of power-laws, also evaluating the intrinsic scatter in these relations. We show that the gas pressure is remarkably well correlated to the density, with very small scatter. Also, the temperature correlates with gas density with similar scatter. The slopes of these relations have values that show a clear transition from the inner cluster regions to the outskirts. This transition occurs at the radius $r_t = 0.19(pm0.04)R_{500}$ and electron density $n_t = (1.91pm0.21)cdot10^{-3} cm^{-3} E^2 (z)$. We find that above 0.2 $R_{500}$ the radial thermodynamic profiles are accurately reproduced by a well defined and physically motivated framework, where the dark matter follows the NFW potential and the gas is represented by a polytropic equation of state. By modeling the gas temperature dependence upon both the gas density and radius, we propose a new method to reconstruct the hydrostatic mass profile based only on the quite inexpensive measurement of the gas density profile.
Measuring the intrinsic shape and orientation of dark matter (DM) and intracluster (IC) gas in galaxy clusters is crucial to constraining their formation and evolution, and for enhancing the use of clusters as more precise cosmological probes. Extend ing our previous works, we present for the first time results from a triaxial joint analysis of the galaxy cluster Abell 1835, by means of X-ray, strong lensing (SL) and Sunyaev Zeldovich (SZ) data. We parametrically reconstruct the full three-dimensional structure (triaxial shape and principal axis orientation) of both the DM and the IC gas, and the level of non-thermal pressure of the IC gas. We find that the intermediate-major and minor-major axis ratios of the DM are 0.71+/-0.08 and 0.59+/-0.05, respectively, and the major axis of the DM halo is inclined with respect to the line of sight at 18.3+/-5.2 deg. We present the first observational measurement of the non-thermal pressure out to R_{200}, which has been evaluated to be a few percent of the total energy budget in the internal regions, while reaching approximately 20% in the outer volumes. We discuss the implications of our method for the viability of the CDM scenario, focusing on the concentration parameter C and the inner slope of the DM gamma in order to test the cold dark matter (CDM) paradigm for structure formation: we measure gamma=1.01+/-0.06 and C=4.32+/-0.44, values which are close to the predictions of the CDM model. The combination of X-ray/SL data at high spatial resolution, capable of resolving the cluster core, with the SZ data, which are more sensitive to the cluster outer volume, allows us to characterize the level and the gradient of the gas entropy distribution and non-thermal pressure out to R_{200}, breaking the degeneracy among the physical models describing the thermal history of the ICM.
The recent discovery of the unidentified emission line at 3.55 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.55 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.55 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.55 keV line.
We present the results of Suzaku observation of the radio halo cluster Abell 2319. The metal abundance in the central cool region is found to be higher than the surrounding region, which was not resolved in the former studies. We confirm that the lin e-of-sight velocities of the intracluster medium in the observed region are consistent with those of the member galaxies of entire A2319 and A2319A subgroup for the first time, though any velocity difference within the region is not detected. On the other hand, we do not find any signs of gas motion relevant to A2319B subgroup. Hard X-ray emission from the cluster is clearly detected, but its spectrum is likely thermal. Assuming a simple single temperature model for the thermal component, we find that the upper limit of the non-thermal inverse Compton component becomes $2.6 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ in the 10-40 keV band, which means that the lower limit of the magnetic field is 0.19 $mu$G with the radio spectral index 0.92. Although the results slightly depend on the detailed spectral modeling, it is robust that the upper limit of the power-law component flux and lower limit of the magnetic field strength become $sim 3 times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ and $sim 0.2 mu$G, respectively. Considering the lack of a significant amount of very hot ($sim 20$ keV) gas and the strong bulk flow motion, it is more likely that the relativistic non-thermal electrons responsible for the radio halo are accelerated through the intracluster turbulence rather than the shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا