ﻻ يوجد ملخص باللغة العربية
We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and SZ signal out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). Using profiles of the gas temperature, density and pressure that have been spatially resolved out to (median value) 0.9 $R_{500}$, 1.8 $R_{500}$, and 2.3 $R_{500}$, respectively, we are able to recover the hydrostatic gravitating mass profile with several methods and using different mass models. The hydrostatic masses are recovered with a relative (statistical) median error of 3% at $R_{500}$ and 6% at $R_{200}$. By using several different methods to solve the equation of the hydrostatic equilibrium, we evaluate some of the systematic uncertainties to be of the order of 5% at both $R_{500}$ and $R_{200}$. A Navarro-Frenk-White profile provides the best-fit in nine cases out of 13, with the remaining four cases that do not show a statistically significant tension with it. The distribution of the mass concentration follows the correlations with the total mass predicted from numerical simulations with a scatter of 0.18 dex, with an intrinsic scatter on the hydrostatic masses of 0.15 dex. We compare them with the estimates of the total gravitational mass obtained through X-ray scaling relations applied to $Y_X$, gas fraction and $Y_{SZ}$, and from weak lensing and galaxy dynamics techniques, and measure a substantial agreement with the results from scaling laws, from WL at both $R_{500}$ and $R_{200}$ (with differences below 15%), from cluster velocity dispersions, but a significant tension with the caustic masses that tend to underestimate the hydrostatic masses by 40% at $R_{200}$. We also compare these measurements with predictions from alternative models to the Cold Dark Matter, like the Emergent Gravity and MOND scenarios.
We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic techn
We present the constraints on the helium abundance in 12 X-ray luminous galaxy clusters that have been mapped in their X-ray and Sunyaev-Zeldovich (SZ) signals out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). The unprecedented p
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
(Abriged) Assuming that the hydrostatic equilibrium holds between the intracluster medium and the gravitational potential, we constrain the NFW profiles in a sample of 44 X-ray luminous galaxy clusters observed with XMM-Newton in the redshift range 0