ترغب بنشر مسار تعليمي؟ اضغط هنا

Autocalibrating and Calibrationless Parallel Magnetic Resonance Imaging as a Bilinear Inverse Problem

122   0   0.0 ( 0 )
 نشر من قبل Martin Uecker
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Uecker




اسأل ChatGPT حول البحث

Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding steps by undersampling. The receive sensitivities are a priori unknown and influenced by geometry and electric properties of the (moving) subject. For optimal results, they need to be estimated jointly with the image from the same undersampled measurement data. Formulated as an inverse problem, this leads to a bilinear reconstruction problem related to multi-channel blind deconvolution. In this work, we will discuss some recently developed approaches for the solution of this problem.



قيم البحث

اقرأ أيضاً

Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging techn ique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.
We present a method for combining the data retrieved by multiple coils of a Magnetic Resonance Imaging (MRI) system with the a priori assumption of compressed sensing to reconstruct a single image. The final image is the result of an optimization pro blem that only includes constraints based on fundamental physics (Maxwells equations and the Biot-Savart law) and accepted phenomena (e.g. sparsity in the Wavelet domain). The problem is solved using an alternating minimization approach: two convex optimization problems are alternately solved, one with the Fast Iterative Shrinkage Threshold Algorithm (FISTA) and the other with the Primal-Dual Hybrid Gradient (PDHG) method. We show results on simulated data as well as data of the knee, brain, and ankle. In all cases studied, results from the new algorithm show higher quality and increased detail when compared to conventional reconstruction algorithms.
Parallel magnetic resonance imaging (MRI) is a technique of image acceleration which takes advantage of the localization of the field of view (FOV) of coils in an array. In this letter we show that metamaterial lenses based on capacitively-loaded rin gs can provide higher localization of the FOV. Several lens designs are systematically analyzed in order to find the structure providing higher signal-to-noise-ratio. The magnetoinductive (MI) lens is find to be the optimum structure and an experiment is developed to show it. The ability of the fabricated MI lenses to accelerate the image is quantified by means of the parameter known in the MRI community as g-factor.
Over almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constr ain physically feasible developments. A common solution to improve imaging speed and resolution is to use higher field strengths, which also has subtle and potentially harmful implications. However, patient safety is to be considered utterly important at all stages of research and clinical routine. Here we show that dynamic metamaterials are a promising solution to expand the potential of MRI and to overcome some limitations. A thin, smart, non-linear metamaterial is presented that enhances the imaging performance and increases the signal-to-noise ratio in 3T MRI significantly (up to eightfold), whilst the transmit field is not affected due to self-detuning and, thus, patient safety is also assured. This self-detuning works without introducing any additional overhead related to MRI-compatible electronic control components or active (de-)tuning mechanisms. The design paradigm, simulation results, on-bench characterization, and MRI experiments using homogeneous and structural phantoms are described. The suggested single-layer metasurface paves the way for conformal and patient-specific manufacturing, which was not possible before due to typically bulky and rigid metamaterial structures.
Auxetics refers to structures or materials with a negative Poissons ratio, thereby capable of exhibiting counter-intuitive behaviors. Herein, auxetic structures are exploited to design mechanically tunable metamaterials in both planar and hemispheric al configurations operating at megahertz (MHz) frequencies, optimized for their application to magnetic resonance imaging (MRI). Specially, the reported tunable metamaterials are composed of arrays of inter-jointed unit cells featuring metallic helices, enabling auxetic patterns with a negative Poissons ratio. The deployable deformation of the metamaterials yields an added degree of freedom with respect to frequency tunability through the resultant modification of the electromagnetic interactions between unit cells. The metamaterials are fabricated using 3D printing technology and a ~20 MHz frequency shift of the resonance mode is enabled during deformation. Experimental validation is performed in a clinical (3.0 Tesla) MRI, demonstrating that the metamaterials enable a marked boost in radiofrequency (RF) field strength under resonance matched conditions, ultimately yielding a dramatic increase in the signal-to-noise ratio (SNR) (~ 4.5X) of MRI. The tunable metamaterials presented herein offer a novel pathway towards the practical utilization of metamaterials in MRI, as well as a range of other emerging applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا