ﻻ يوجد ملخص باللغة العربية
Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding steps by undersampling. The receive sensitivities are a priori unknown and influenced by geometry and electric properties of the (moving) subject. For optimal results, they need to be estimated jointly with the image from the same undersampled measurement data. Formulated as an inverse problem, this leads to a bilinear reconstruction problem related to multi-channel blind deconvolution. In this work, we will discuss some recently developed approaches for the solution of this problem.
Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging techn
We present a method for combining the data retrieved by multiple coils of a Magnetic Resonance Imaging (MRI) system with the a priori assumption of compressed sensing to reconstruct a single image. The final image is the result of an optimization pro
Parallel magnetic resonance imaging (MRI) is a technique of image acceleration which takes advantage of the localization of the field of view (FOV) of coils in an array. In this letter we show that metamaterial lenses based on capacitively-loaded rin
Over almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constr
Auxetics refers to structures or materials with a negative Poissons ratio, thereby capable of exhibiting counter-intuitive behaviors. Herein, auxetic structures are exploited to design mechanically tunable metamaterials in both planar and hemispheric