ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity Search for Efficient Active Learning and Search of Rare Concepts

86   0   0.0 ( 0 )
 نشر من قبل Cody Coleman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many active learning and search approaches are intractable for large-scale industrial settings with billions of unlabeled examples. Existing approaches search globally for the optimal examples to label, scaling linearly or even quadratically with the unlabeled data. In this paper, we improve the computational efficiency of active learning and search methods by restricting the candidate pool for labeling to the nearest neighbors of the currently labeled set instead of scanning over all of the unlabeled data. We evaluate several selection strategies in this setting on three large-scale computer vision datasets: ImageNet, OpenImages, and a de-identified and aggregated dataset of 10 billion images provided by a large internet company. Our approach achieved similar mean average precision and recall as the traditional global approach while reducing the computational cost of selection by up to three orders of magnitude, thus enabling web-scale active learning.

قيم البحث

اقرأ أيضاً

Robust Policy Search is the problem of learning policies that do not degrade in performance when subject to unseen environment model parameters. It is particularly relevant for transferring policies learned in a simulation environment to the real wor ld. Several existing approaches involve sampling large batches of trajectories which reflect the differences in various possible environments, and then selecting some subset of these to learn robust policies, such as the ones that result in the worst performance. We propose an active learning based framework, EffAcTS, to selectively choose model parameters for this purpose so as to collect only as much data as necessary to select such a subset. We apply this framework to an existing method, namely EPOpt, and experimentally validate the gains in sample efficiency and the performance of our approach on standard continuous control tasks. We also present a Multi-Task Learning perspective to the problem of Robust Policy Search, and draw connections from our proposed framework to existing work on Multi-Task Learning.
89 - Casper Hansen 2021
How data is represented and operationalized is critical for building computational solutions that are both effective and efficient. A common approach is to represent data objects as binary vectors, denoted textit{hash codes}, which require little sto rage and enable efficient similarity search through direct indexing into a hash table or through similarity computations in an appropriate space. Due to the limited expressibility of hash codes, compared to real-valued representations, a core open challenge is how to generate hash codes that well capture semantic content or latent properties using a small number of bits, while ensuring that the hash codes are distributed in a way that does not reduce their search efficiency. State of the art methods use representation learning for generating such hash codes, focusing on neural autoencoder architectures where semantics are encoded into the hash codes by learning to reconstruct the original inputs of the hash codes. This thesis addresses the above challenge and makes a number of contributions to representation learning that (i) improve effectiveness of hash codes through more expressive representations and a more effective similarity measure than the current state of the art, namely the Hamming distance, and (ii) improve efficiency of hash codes by learning representations that are especially suited to the choice of search method. The contributions are empirically validated on several tasks related to similarity search and recommendation.
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neu ral architecture search techniques in RL, and demonstrate that by simply replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code. Surprisingly, we find that the supernet can be used as an actor for inference to generate replay data in standard RL training loops, and thus train end-to-end. Throughout this training process, we show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
114 - Xuefeng Du , Pengtao Xie 2020
In human learning, an effective learning methodology is small-group learning: a small group of students work together towards the same learning objective, where they express their understanding of a topic to their peers, compare their ideas, and help each other to trouble-shoot problems. In this paper, we aim to investigate whether this human learning method can be borrowed to train better machine learning models, by developing a novel ML framework -- small-group learning (SGL). In our framework, a group of learners (ML models) with different model architectures collaboratively help each other to learn by leveraging their complementary advantages. Specifically, each learner uses its intermediately trained model to generate a pseudo-labeled dataset and re-trains its model using pseudo-labeled datasets generated by other learners. SGL is formulated as a multi-level optimization framework consisting of three learning stages: each learner trains a model independently and uses this model to perform pseudo-labeling; each learner trains another model using datasets pseudo-labeled by other learners; learners improve their architectures by minimizing validation losses. An efficient algorithm is developed to solve the multi-level optimization problem. We apply SGL for neural architecture search. Results on CIFAR-100, CIFAR-10, and ImageNet demonstrate the effectiveness of our method.
Predictor-based algorithms have achieved remarkable performance in the Neural Architecture Search (NAS) tasks. However, these methods suffer from high computation costs, as training the performance predictor usually requires training and evaluating h undreds of architectures from scratch. Previous works along this line mainly focus on reducing the number of architectures required to fit the predictor. In this work, we tackle this challenge from a different perspective - improve search efficiency by cutting down the computation budget of architecture training. We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget. To effectively leverage the non-uniform supervision signals produced by NOSH, we formulate predictor-based architecture search as learning to rank with pairwise comparisons. The resulting method - RANK-NOSH, reduces the search budget by ~5x while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا