ﻻ يوجد ملخص باللغة العربية
Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies have been predicted however remain challenging to realize in solid state materials. Here, charge density wave compound TaTe4 is proposed to hold eightfold fermionic excitation and Dirac point in energy bands. High quality TaTe4 single crystals are prepared, where the charge density wave is revealed by directly imaging the atomic structure and a pseudogap of about 45 meV on the surface. Shubnikov de-Haas oscillations of TaTe4 are consistent with band structure calculation. Scanning tunneling microscopy reveals atomic step edge states on the surface of TaTe4. This work uncovers that charge density wave is able to induce new topological phases and sheds new light on the novel excitations in condensed matter materials.
Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The non-equilibrium carrier distribution established via photodoping with fem
Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the sin
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe4. By combining transport
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist
A series of high-pressure resistivity measurements on single crystals of TbTe3 reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave orders. The onset of superconductivity reaches a maximum of ~ 3.5 K (onset) near 75 kbar.