ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure induced superconductivity in the charge density wave compound TbTe3

135   0   0.0 ( 0 )
 نشر من قبل James Hamlin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of high-pressure resistivity measurements on single crystals of TbTe3 reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave orders. The onset of superconductivity reaches a maximum of ~ 3.5 K (onset) near 75 kbar.


قيم البحث

اقرأ أيضاً

Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc ^~3K) can be induced in Bi2Te3 as-grown single crystal (with hole-carriers) via pressure. The first-principles calculations show that the electronic structure under pressure remains to be topologically nontrivial, and the Dirac-type surface states can be well distinguished from bulk states at corresponding Fermi level. The proximity effect between superconducting bulk states and Dirac-type surface state could generate Majorana fermions on the surface. We also discuss the possibility that the bulk state could be a topological superconductor.
107 - K. Igawa , H. Okada , H. Takahashi 2008
Electrical resistivity under high pressure have been measured on nominally pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing pressure, and we clearly observed zero resistivity. The maximum of superconducting transition tempera ture (Tc) is 38 K. The value is corresponding to the one of optimally doping AFe2As2 (A=Sr, Ba) system with K+ ions at the A2+ site.
299 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M ott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
115 - Qi Wang , Pengfei Kong , Wujun Shi 2021
Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3Sb5 single crystal with V kagome lattice are i nvestigated. By using high-resolution scanning tunnelling microscopy /spectroscopy (STM/STS), two CDW orders in CsV3Sb5 are observed which correspond to 4a*1a and 2a*2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4 - 0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.
The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe$_2$Se$_3$ and BaFe$_2$S$_3$ have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhi bit highly contrasting magnetic behaviors under moderate external pressures. In CsFe$_2$Se$_3$ the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe$_2$S$_3$, undergoes a quantum phase transition where an abrupt increase of N$acute{e}$el temperature by more than 50$%$ occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe$_2$S$_3$ enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا