ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware Detection

97   0   0.0 ( 0 )
 نشر من قبل Deqiang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attackers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.

قيم البحث

اقرأ أيضاً

Machine learning (ML) classifiers are vulnerable to adversarial examples. An adversarial example is an input sample which is slightly modified to induce misclassification in an ML classifier. In this work, we investigate white-box and grey-box evasio n attacks to an ML-based malware detector and conduct performance evaluations in a real-world setting. We compare the defense approaches in mitigating the attacks. We propose a framework for deploying grey-box and black-box attacks to malware detection systems.
The evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine learning-based mal ware detection tools (such as Drebin, DroidAPIMiner, and MaMaDroid) ineffective. In this paper, we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can be misled under three different threat models; then conclude that injecting carefully crafted data into training data can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning enhancing approach that learns mobile malware by adversarial detection. KuafuDet includes an offline training phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false negatives and feed them back into the training phase. We finally show that KuafuDet can significantly reduce false negatives and boost the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications demonstrate that KuafuDet is scalable and can be highly effective as a standalone system.
Adversarial patch attacks are among one of the most practical threat models against real-world computer vision systems. This paper studies certified and empirical defenses against patch attacks. We begin with a set of experiments showing that most ex isting defenses, which work by pre-processing input images to mitigate adversarial patches, are easily broken by simple white-box adversaries. Motivated by this finding, we propose the first certified defense against patch attacks, and propose faster methods for its training. Furthermore, we experiment with different patch shapes for testing, obtaining surprisingly good robustness transfer across shapes, and present preliminary results on certified defense against sparse attacks. Our complete implementation can be found on: https://github.com/Ping-C/certifiedpatchdefense.
Neural networks are increasingly used in security applications for intrusion detection on industrial control systems. In this work we examine two areas that must be considered for their effective use. Firstly, is their vulnerability to adversarial at tacks when used in a time series setting. Secondly, is potential over-estimation of performance arising from data leakage artefacts. To investigate these areas we implement a long short-term memory (LSTM) based intrusion detection system (IDS) which effectively detects cyber-physical attacks on a water treatment testbed representing a strong baseline IDS. For investigating adversarial attacks we model two different white box attackers. The first attacker is able to manipulate sensor readings on a subset of the Secure Water Treatment (SWaT) system. By creating a stream of adversarial data the attacker is able to hide the cyber-physical attacks from the IDS. For the cyber-physical attacks which are detected by the IDS, the attacker required on average 2.48 out of 12 total sensors to be compromised for the cyber-physical attacks to be hidden from the IDS. The second attacker model we explore is an $L_{infty}$ bounded attacker who can send fake readings to the IDS, but to remain imperceptible, limits their perturbations to the smallest $L_{infty}$ value needed. Additionally, we examine data leakage problems arising from tuning for $F_1$ score on the whole SWaT attack set and propose a method to tune detection parameters that does not utilise any attack data. If attack after-effects are accounted for then our new parameter tuning method achieved an $F_1$ score of 0.811$pm$0.0103.
Adversarial machine learning in the context of image processing and related applications has received a large amount of attention. However, adversarial machine learning, especially adversarial deep learning, in the context of malware detection has re ceived much less attention despite its apparent importance. In this paper, we present a framework for enhancing the robustness of Deep Neural Networks (DNNs) against adversarial malware samples, dubbed Hashing Transformation Deep Neural Networks} (HashTran-DNN). The core idea is to use hash functions with a certain locality-preserving property to transform samples to enhance the robustness of DNNs in malware classification. The framework further uses a Denoising Auto-Encoder (DAE) regularizer to reconstruct the hash representations of samples, making the resulting DNN classifiers capable of attaining the locality information in the latent space. We experiment with two concrete instantiations of the HashTran-DNN framework to classify Android malware. Experimental results show that four known attacks can render standard DNNs useless in classifying Android malware, that known defenses can at most defend three of the four attacks, and that HashTran-DNN can effectively defend against all of the four attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا