ﻻ يوجد ملخص باللغة العربية
The evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine learning-based malware detection tools (such as Drebin, DroidAPIMiner, and MaMaDroid) ineffective. In this paper, we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can be misled under three different threat models; then conclude that injecting carefully crafted data into training data can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning enhancing approach that learns mobile malware by adversarial detection. KuafuDet includes an offline training phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false negatives and feed them back into the training phase. We finally show that KuafuDet can significantly reduce false negatives and boost the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications demonstrate that KuafuDet is scalable and can be highly effective as a standalone system.
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack
Federated machine learning which enables resource constrained node devices (e.g., mobile phones and IoT devices) to learn a shared model while keeping the training data local, can provide privacy, security and economic benefits by designing an effect
As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human superv
Recommender systems play a crucial role in helping users to find their interested information in various web services such as Amazon, YouTube, and Google News. Various recommender systems, ranging from neighborhood-based, association-rule-based, matr
Reliable evaluation of adversarial defenses is a challenging task, currently limited to an expert who manually crafts attacks that exploit the defenses inner workings, or to approaches based on ensemble of fixed attacks, none of which may be effectiv