ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Poisoning Attacks and Defenses in Malware Detection Systems: An Adversarial Machine Learning Approach

108   0   0.0 ( 0 )
 نشر من قبل Sen Chen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine learning-based malware detection tools (such as Drebin, DroidAPIMiner, and MaMaDroid) ineffective. In this paper, we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can be misled under three different threat models; then conclude that injecting carefully crafted data into training data can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning enhancing approach that learns mobile malware by adversarial detection. KuafuDet includes an offline training phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false negatives and feed them back into the training phase. We finally show that KuafuDet can significantly reduce false negatives and boost the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications demonstrate that KuafuDet is scalable and can be highly effective as a standalone system.



قيم البحث

اقرأ أيضاً

96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack ers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
75 - Gan Sun , Yang Cong 2020
Federated machine learning which enables resource constrained node devices (e.g., mobile phones and IoT devices) to learn a shared model while keeping the training data local, can provide privacy, security and economic benefits by designing an effect ive communication protocol. However, the communication protocol amongst different nodes could be exploited by attackers to launch data poisoning attacks, which has been demonstrated as a big threat to most machine learning models. In this paper, we attempt to explore the vulnerability of federated machine learning. More specifically, we focus on attacking a federated multi-task learning framework, which is a federated learning framework via adopting a general multi-task learning framework to handle statistical challenges. We formulate the problem of computing optimal poisoning attacks on federated multi-task learning as a bilevel program that is adaptive to arbitrary choice of target nodes and source attacking nodes. Then we propose a novel systems-aware optimization method, ATTack on Federated Learning (AT2FL), which is efficiency to derive the implicit gradients for poisoned data, and further compute optimal attack strategies in the federated machine learning. Our work is an earlier study that considers issues of data poisoning attack for federated learning. To the end, experimental results on real-world datasets show that federated multi-task learning model is very sensitive to poisoning attacks, when the attackers either directly poison the target nodes or indirectly poison the related nodes by exploiting the communication protocol.
As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human superv ision over the data collection process exposes organizations to security vulnerabilities; training data can be manipulated to control and degrade the downstream behaviors of learned models. The goal of this work is to systematically categorize and discuss a wide range of dataset vulnerabilities and exploits, approaches for defending against these threats, and an array of open problems in this space. In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
Recommender systems play a crucial role in helping users to find their interested information in various web services such as Amazon, YouTube, and Google News. Various recommender systems, ranging from neighborhood-based, association-rule-based, matr ix-factorization-based, to deep learning based, have been developed and deployed in industry. Among them, deep learning based recommender systems become increasingly popular due to their superior performance. In this work, we conduct the first systematic study on data poisoning attacks to deep learning based recommender systems. An attackers goal is to manipulate a recommender system such that the attacker-chosen target items are recommended to many users. To achieve this goal, our attack injects fake users with carefully crafted ratings to a recommender system. Specifically, we formulate our attack as an optimization problem, such that the injected ratings would maximize the number of normal users to whom the target items are recommended. However, it is challenging to solve the optimization problem because it is a non-convex integer programming problem. To address the challenge, we develop multiple techniques to approximately solve the optimization problem. Our experimental results on three real-world datasets, including small and large datasets, show that our attack is effective and outperforms existing attacks. Moreover, we attempt to detect fake users via statistical analysis of the rating patterns of normal and fake users. Our results show that our attack is still effective and outperforms existing attacks even if such a detector is deployed.
Reliable evaluation of adversarial defenses is a challenging task, currently limited to an expert who manually crafts attacks that exploit the defenses inner workings, or to approaches based on ensemble of fixed attacks, none of which may be effectiv e for the specific defense at hand. Our key observation is that custom attacks are composed from a set of reusable building blocks, such as fine-tuning relevant attack parameters, network transformations, and custom loss functions. Based on this observation, we present an extensible framework that defines a search space over these reusable building blocks and automatically discovers an effective attack on a given model with an unknown defense by searching over suitable combinations of these blocks. We evaluated our framework on 23 adversarial defenses and showed it outperforms AutoAttack, the current state-of-the-art tool for reliable evaluation of adversarial defenses: our discovered attacks are either stronger, producing 3.0%-50.8% additional adversarial examples (10 cases), or are typically 2x faster while enjoying similar adversarial robustness (13 cases).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا