ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon nitride grating based planar spectral splitting concentrator for NIR light Harvesting

63   0   0.0 ( 0 )
 نشر من قبل Volker Sorger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We design a multi-layered solar spectral splitting planar concentrator for near infrared (NIR) light energy harvesting application. Each layer includes a silicon nitride based subwavelength diffraction grating on top of a glass substrate that is optimized to diffract the incoming solar radiation in a specific band from a broad spectral band (700-1400 nm in the NIR region) into guided modes propagating inside the glass substrate. The steep diffraction angle due to subwavelength grating results in concentrated light at the edge of each layer where it is then converted to electricity using a photovoltaic cell. The spectral splitting planar concentrator shows an overall NIR guiding efficiency of ~18%, and power conversion efficiency of ~11%. The design can be potentially used for building integrated photovoltaics application.

قيم البحث

اقرأ أيضاً

157 - Chao Xiang , Joel Guo , Warren Jin 2021
Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic inte grated circuits (PICs), but are difficult to fully integrate with low-index SiN waveguides due to their large mismatch with the high-index III-V gain materials. The recent demonstration of multilayer heterogeneous integration provides a practical solution and enabled the first-generation of lasers fully integrated with SiN waveguides. However a laser with high device yield and high output power at telecommunication wavelengths, where photonics applications are clustered, is still missing, hindered by large mode transition loss, nonoptimized cavity design, and a complicated fabrication process. Here, we report high-performance lasers on SiN with tens of milliwatts output through the SiN waveguide and sub-kHz fundamental linewidth, addressing all of the aforementioned issues. We also show Hertz-level linewidth lasers are achievable with the developed integration techniques. These lasers, together with high-$Q$ SiN resonators, mark a milestone towards a fully-integrated low-noise silicon nitride photonics platform. This laser should find potential applications in LIDAR, microwave photonics and coherent optical communications.
Integrated photonics has enabled signal synthesis, modulation and conversion using photonic integrated circuits (PIC). Many materials have been developed, among which silicon nitride (Si$_3$N$_4$) has emerged as a leading platform particularly for no nlinear photonics. Low-loss Si$_3$N$_4$ PIC has been widely used for frequency comb generation, narrow-linewidth lasers, microwave photonics, photonic computing networks, and even surface-electrode ion traps. Yet, among all demonstrated functionalities for Si$_3$N$_4$ integrated photonics, optical non-reciprocal devices, such as isolators and circulators, have not been achieved. Conventionally, they are realized based on Faraday effect of magneto-optic materials under external magnetic field. However, it has been challenging to integrate magneto-optic materials that are not CMOS-compatible and that require bulky external magnet. Here, we demonstrate a magnetic-free optical isolator based on aluminum nitride (AlN) piezoelectric modulators monolithically integrated on ultralow-loss Si$_3$N$_4$ PIC. The transmission reciprocity is broken by spatio-temporal modulation of a Si$_3$N$_4$ microring resonator with three AlN bulk acoustic wave resonators that are driven with a rotational phase. This design creates an effective rotating acoustic wave that allows indirect interband transition in only one direction among a pair of strongly coupled optical modes. Maximum of 10 dB isolation is achieved under 100 mW RF power applied to each actuator, with minimum insertion loss of 0.1 dB. The isolation remains constant over nearly 30 dB dynamic range of optical input power, showing excellent optical linearity. Our integrated, linear, magnetic-free, electrically driven optical isolator could become key building blocks for integrated lasers, chip-scale LiDAR engines, as well as optical interfaces for superconducting circuits.
We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si$_3$N$_4$ waveguides with a standard core cross section o f 4.4$times$0.03 $mu$m$^2$ size, buried 8 $mu$m deep in a SiO$_2$ cladding we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x10$^{-3}$ was obtained for TE polarized light, using an IDT period of 30 - 35 $mu$m, a film thickness of 2.5 - 3.5 $mu$m, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to 1.2x10$^{-3}$, with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 $mu$m. The relative index change is about 300-times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200-times higher. Exploiting the maximum relative index change of 1.2$times$10$^{-3}$ in a low-loss balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 $mu$m (half-wave voltage length product = 0.24 Vcm).
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around 1.55 um wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid integrated diode laser.
Efficient devices for light harvesting and photon sensing are fundamental building blocks of basic energy science and many essential technologies. Recent efforts have turned to biomimicry to design the next generation of light-capturing devices, part ially fueled by an appreciation of the fantastic efficiency of the initial stages of natural photosynthetic systems at capturing photons. In such systems extended excitonic states are thought to play a fundamental functional role, inducing cooperative coherent effects, such as superabsorption of light and supertransfer of photoexcitations. Inspired by this observation, we design an artificial light-harvesting and photodetection device that maximally harnesses cooperative effects to enhance efficiency. The design relies on separating absorption and transfer processes (energetically and spatially) in order to overcome the fundamental obstacle to exploiting cooperative effects to enhance light capture: the enhanced emission processes that accompany superabsorption. This engineered separation of processes greatly improves the efficiency and the scalability of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا