ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient light harvesting and photon sensing via engineered cooperative effects

107   0   0.0 ( 0 )
 نشر من قبل Francesco Mattiotti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient devices for light harvesting and photon sensing are fundamental building blocks of basic energy science and many essential technologies. Recent efforts have turned to biomimicry to design the next generation of light-capturing devices, partially fueled by an appreciation of the fantastic efficiency of the initial stages of natural photosynthetic systems at capturing photons. In such systems extended excitonic states are thought to play a fundamental functional role, inducing cooperative coherent effects, such as superabsorption of light and supertransfer of photoexcitations. Inspired by this observation, we design an artificial light-harvesting and photodetection device that maximally harnesses cooperative effects to enhance efficiency. The design relies on separating absorption and transfer processes (energetically and spatially) in order to overcome the fundamental obstacle to exploiting cooperative effects to enhance light capture: the enhanced emission processes that accompany superabsorption. This engineered separation of processes greatly improves the efficiency and the scalability of the system.

قيم البحث

اقرأ أيضاً

We design a multi-layered solar spectral splitting planar concentrator for near infrared (NIR) light energy harvesting application. Each layer includes a silicon nitride based subwavelength diffraction grating on top of a glass substrate that is opti mized to diffract the incoming solar radiation in a specific band from a broad spectral band (700-1400 nm in the NIR region) into guided modes propagating inside the glass substrate. The steep diffraction angle due to subwavelength grating results in concentrated light at the edge of each layer where it is then converted to electricity using a photovoltaic cell. The spectral splitting planar concentrator shows an overall NIR guiding efficiency of ~18%, and power conversion efficiency of ~11%. The design can be potentially used for building integrated photovoltaics application.
The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled c onditions so far. And its real potential lies at the practical applications in the field of remote sensing. We have established a 120-meter long free-space link between the rooftops of two buildings and show that both the rotation speed and the rotational symmetry of objects can be identified from the detected rotational Doppler frequency shift signal at photon count level. Effects of possible slight misalignments and atmospheric turbulences are quantitatively analyzed in terms of mode power spreading to the adjacent modes as well as the transfer of rotational frequency shifts. Moreover, our results demonstrate that with the preknowledge of the objects rotational symmetry one may always deduce the rotation speed no matter how strong the coupling to neighboring modes is. Without any information of the rotating object, the deduction of the objects symmetry and rotational speed may still be obtained as long as the mode spreading efficiency does not exceed 50 %. Our work supports the feasibility of a practical sensor to remotely detect both the speed and symmetry of rotating bodies.
Thin film lithium niobate (LN) has recently emerged as a playground for chip-scale nonlinear optics and leads to highly efficient frequency
The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as am plitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We describe a foundational demonstration that examines a laser architecture offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.
Room temperature single-photon sources (SPSs) are critical for the emerging practical quantum applications such as on-chip photonic circuity for quantum communications systems and integrated quantum sensors. However, direct integration of an SPS into on-chip photonic systems remains challenging due to low coupling efficiencies between the SPS and the photonic circuitry that often involve size mismatch and dissimilar materials. Here, we develop an adjoint topology optimization scheme to design high-efficiency couplers between a photonic waveguide and SPS in hexagonal boron nitride (hBN). The algorithm accounts for fabrication constraints and the SPS location uncertainty. First, a library of designs for the different positions of the hBN flake containing an SPS with respect to a Si$_{3}$N$_{4}$ waveguide is generated, demonstrating an average coupling efficiency of 78%. Then, the designs are inspected with dimensionality reduction technique to investigate the relationship between the device geometry (topology) and performance. The fundamental, physics-based intuition gained from this approach could enable the design of high-performance quantum devices
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا