ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Impact of Side Information on Smart Meter Privacy-Preserving Methods

342   0   0.0 ( 0 )
 نشر من قبل Mohammadhadi Shateri
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of distortion-based real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser (a recurrent neural network) is trained by fighting against an adversary network until convergence. To define the loss functions, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches is in how the privacy term is measured during the training process. On the one hand, the releaser in the CAL method, by getting supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included.



قيم البحث

اقرأ أيضاً

The explosion of data collection has raised serious privacy concerns in users due to the possibility that sharing data may also reveal sensitive information. The main goal of a privacy-preserving mechanism is to prevent a malicious third party from i nferring sensitive information while keeping the shared data useful. In this paper, we study this problem in the context of time series data and smart meters (SMs) power consumption measurements in particular. Although Mutual Information (MI) between private and released variables has been used as a common information-theoretic privacy measure, it fails to capture the causal time dependencies present in the power consumption time series data. To overcome this limitation, we introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting and propose a novel loss function. The optimization is then performed using an adversarial framework where two Recurrent Neural Networks (RNNs), referred to as the releaser and the adversary, are trained with opposite goals. Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario where an attacker has access to all the training data set used by the releaser, validate the proposed method and show the existing trade-offs between privacy and utility.
Smart Meters (SMs) are a fundamental component of smart grids, but they carry sensitive information about users such as occupancy status of houses and therefore, they have raised serious concerns about leakage of consumers private information. In par ticular, we focus on real-time privacy threats, i.e., potential attackers that try to infer sensitive data from SMs reported data in an online fashion. We adopt an information-theoretic privacy measure and show that it effectively limits the performance of any real-time attacker. Using this privacy measure, we propose a general formulation to design a privatization mechanism that can provide a target level of privacy by adding a minimal amount of distortion to the SMs measurements. On the other hand, to cope with different applications, a flexible distortion measure is considered. This formulation leads to a general loss function, which is optimized using a deep learning adversarial framework, where two neural networks $-$ referred to as the releaser and the adversary $-$ are trained with opposite goals. An exhaustive empirical study is then performed to validate the performances of the proposed approach for the occupancy detection privacy problem, assuming the attacker disposes of either limited or full access to the training dataset.
Fine-grained Smart Meters (SMs) data recording and communication has enabled several features of Smart Grids (SGs) such as power quality monitoring, load forecasting, fault detection, and so on. In addition, it has benefited the users by giving them more control over their electricity consumption. However, it is well-known that it also discloses sensitive information about the users, i.e., an attacker can infer users private information by analyzing the SMs data. In this study, we propose a privacy-preserving approach based on non-uniform down-sampling of SMs data. We formulate this as the problem of learning a sparse representation of SMs data with minimum information leakage and maximum utility. The architecture is composed of a releaser, which is a recurrent neural network (RNN), that is trained to generate the sparse representation by masking the SMs data, and an utility and adversary networks (also RNNs), which help the releaser to minimize the leakage of information about the private attribute, while keeping the reconstruction error of the SMs data minimum (i.e., maximum utility). The performance of the proposed technique is assessed based on actual SMs data and compared with uniform down-sampling, random (non-uniform) down-sampling, as well as the state-of-the-art in privacy-preserving methods using a data manipulation approach. It is shown that our method performs better in terms of the privacy-utility trade-off while releasing much less data, thus also being more efficient.
Searching for available parking spaces is a major problem for drivers especially in big crowded cities, causing traffic congestion and air pollution, and wasting drivers time. Smart parking systems are a novel solution to enable drivers to have real- time parking information for pre-booking. However, current smart parking requires drivers to disclose their private information, such as desired destinations. Moreover, the existing schemes are centralized and vulnerable to the bottleneck of the single point of failure and data breaches. In this paper, we propose a distributed privacy-preserving smart parking system using blockchain. A consortium blockchain created by different parking lot owners to ensure security, transparency, and availability is proposed to store their parking offers on the blockchain. To preserve drivers location privacy, we adopt a private information retrieval (PIR) technique to enable drivers to retrieve parking offers from blockchain nodes privately, without revealing which parking offers are retrieved. Furthermore, a short randomizable signature is used to enable drivers to reserve available parking slots in an anonymous manner. Besides, we introduce an anonymous payment system that cannot link drivers to specific parking locations. Finally, our performance evaluations demonstrate that the proposed scheme can preserve drivers privacy with low communication and computation overhead.
Smart meters (SMs) share fine-grained electricity consumption of households with utility providers almost in real-time. This can violate the users privacy since sensitive information is leaked through the SMs data. In this study, a novel privacy-awar e method which exploits the availability of a rechargeable battery (RB) is proposed. It is based on a Markov decision process (MDP) formulation in which the reward received by the agent is designed to control the trade-off between privacy and electricity cost. To obtain a robust and general privacy measure, we adopt the mutual information (MI) between the users demand load and the masked load seen by the grid. Unlike previous studies, we model the whole temporal correlation in the data to estimate the MI in its general form. The training of the agent is done using a model-free deep reinforcement learning algorithm known as the deep double Q-learning (DDQL) method. In order to estimate the MI-based privacy signal, a neural network termed the H-network is included in the scheme. The performance of the DDQL-MI algorithm is assessed empirically using actual SMs data and compared with simpler privacy measures. The results show significant improvements over the state-of-the-art privacy-aware SMs methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا