ﻻ يوجد ملخص باللغة العربية
Smart meters (SMs) share fine-grained electricity consumption of households with utility providers almost in real-time. This can violate the users privacy since sensitive information is leaked through the SMs data. In this study, a novel privacy-aware method which exploits the availability of a rechargeable battery (RB) is proposed. It is based on a Markov decision process (MDP) formulation in which the reward received by the agent is designed to control the trade-off between privacy and electricity cost. To obtain a robust and general privacy measure, we adopt the mutual information (MI) between the users demand load and the masked load seen by the grid. Unlike previous studies, we model the whole temporal correlation in the data to estimate the MI in its general form. The training of the agent is done using a model-free deep reinforcement learning algorithm known as the deep double Q-learning (DDQL) method. In order to estimate the MI-based privacy signal, a neural network termed the H-network is included in the scheme. The performance of the DDQL-MI algorithm is assessed empirically using actual SMs data and compared with simpler privacy measures. The results show significant improvements over the state-of-the-art privacy-aware SMs methods.
Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a th
Fine-grained Smart Meters (SMs) data recording and communication has enabled several features of Smart Grids (SGs) such as power quality monitoring, load forecasting, fault detection, and so on. In addition, it has benefited the users by giving them
Smart Meters (SMs) are a fundamental component of smart grids, but they carry sensitive information about users such as occupancy status of houses and therefore, they have raised serious concerns about leakage of consumers private information. In par
Detecting inaccurate smart meters and targeting them for replacement can save significant resources. For this purpose, a novel deep-learning method was developed based on long short-term memory (LSTM) and a modified convolutional neural network (CNN)
Mobile system-on-chips (SoCs) are growing in their complexity and heterogeneity (e.g., Arms Big-Little architecture) to meet the needs of emerging applications, including games and artificial intelligence. This makes it very challenging to optimally