ﻻ يوجد ملخص باللغة العربية
Fine-grained Smart Meters (SMs) data recording and communication has enabled several features of Smart Grids (SGs) such as power quality monitoring, load forecasting, fault detection, and so on. In addition, it has benefited the users by giving them more control over their electricity consumption. However, it is well-known that it also discloses sensitive information about the users, i.e., an attacker can infer users private information by analyzing the SMs data. In this study, we propose a privacy-preserving approach based on non-uniform down-sampling of SMs data. We formulate this as the problem of learning a sparse representation of SMs data with minimum information leakage and maximum utility. The architecture is composed of a releaser, which is a recurrent neural network (RNN), that is trained to generate the sparse representation by masking the SMs data, and an utility and adversary networks (also RNNs), which help the releaser to minimize the leakage of information about the private attribute, while keeping the reconstruction error of the SMs data minimum (i.e., maximum utility). The performance of the proposed technique is assessed based on actual SMs data and compared with uniform down-sampling, random (non-uniform) down-sampling, as well as the state-of-the-art in privacy-preserving methods using a data manipulation approach. It is shown that our method performs better in terms of the privacy-utility trade-off while releasing much less data, thus also being more efficient.
Smart Meters (SMs) are a fundamental component of smart grids, but they carry sensitive information about users such as occupancy status of houses and therefore, they have raised serious concerns about leakage of consumers private information. In par
Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a th
Smart meters (SMs) share fine-grained electricity consumption of households with utility providers almost in real-time. This can violate the users privacy since sensitive information is leaked through the SMs data. In this study, a novel privacy-awar
The explosion of data collection has raised serious privacy concerns in users due to the possibility that sharing data may also reveal sensitive information. The main goal of a privacy-preserving mechanism is to prevent a malicious third party from i
Detecting inaccurate smart meters and targeting them for replacement can save significant resources. For this purpose, a novel deep-learning method was developed based on long short-term memory (LSTM) and a modified convolutional neural network (CNN)