ﻻ يوجد ملخص باللغة العربية
In this work we use the random matrix theory (RMT) to correctly describethe behavior of spectral statistical properties of the sea surface temperatureof oceans. This oceanographic variable plays an important role in theglobalclimate system. The data were obtained from National Oceanic and Atmo-spheric Administration (NOAA) and delimited for the period 1982 to 2016.The results show that oceanographic systems presented specific $beta$ values thatcan be used to classify each ocean according to its correlation behavior. Thenearest-neighbors spacing of correlation matrix for north, central and south ofthe three oceans get close to a RMT distribution. However, the regions delim-ited in the Antarctic pole exhibited the distribution of the nearest-neighborsspacing well described by the Poisson model, which shows astatistical changeof RMT to Poisson fluctuations.
We have analyzed the teleconnection of total cloud fraction (TCF) with global sea surface temperature (SST) in multi-model ensembles (MME) of the fifth and sixth Coupled Model Intercomparison Projects (CMIP5 and CMIP6). CMIP6-MME has a more robust an
Boundary layer turbulence in coastal regions differs from that in deep ocean because of bottom interactions. In this paper, we focus on the merging of surface and bottom boundary layers in a finite-depth coastal ocean by numerically solving the wave-
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$
The predictability of the atmosphere at short and long time scales, associated with the coupling to the ocean, is explored in a new version of the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), based on a 2-layer quasi-geostrophic atmospher
Consider a random vector $mathbf{y}=mathbf{Sigma}^{1/2}mathbf{x}$, where the $p$ elements of the vector $mathbf{x}$ are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $mathbf{Sigma}^{1/2}$ is a deterministic $ptimes