ﻻ يوجد ملخص باللغة العربية
The predictability of the atmosphere at short and long time scales, associated with the coupling to the ocean, is explored in a new version of the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), based on a 2-layer quasi-geostrophic atmosphere and a 1-layer reduced-gravity quasi-geostrophic ocean. This version features a new ocean basin geometry with periodic boundary conditions in the zonal direction. The analysis presented in this paper considers a low-order version of the model with 40 dynamical variables. First the increase of surface friction (and the associated heat flux) with the ocean can either induce chaos when the aspect ratio between the meridional and zonal directions of the domain of integration is small, or suppress chaos when it is large. This reflects the potentially counter-intuitive role that the ocean can play in the coupled dynamics. Second, and perhaps more importantly, the emergence of long-term predictability within the atmosphere for specific values of the friction coefficient occurs through intermittent excursions in the vicinity of a (long-period) unstable periodic solution. Once close to this solution the system is predictable for long times, i.e. a few years. The intermittent transition close to this orbit is, however, erratic and probably hard to predict. This new route to long-term predictability contrasts with the one found in the closed ocean-basin low-order version of MAOOAM, in which the chaotic solution is permanently wandering in the vicinity of an unstable periodic orbit for specific values of the friction coefficient. The model solution is thus at any time influenced by the unstable periodic orbit and inherits from its long-term predictability.
This paper describes a reduced-order quasi-geostrophic coupled ocean-atmosphere model that allows for an arbitrary number of atmospheric and oceanic modes to be retained in the spectral decomposition. The modularity of this new model allows one to ea
A new framework is proposed for the evaluation of stochastic subgrid-scale parameterizations in the context of MAOOAM, a coupled ocean-atmosphere model of intermediate complexity. Two physically-based parameterizations are investigated, the first one
One the major factors determining the development and evolution of atmospheric convection is the sea surface temperature and its variability. Results of this thesis show that state of atmospheric convection impacts the diurnal distribution of thermal
A stochastic subgrid-scale parameterization based on the Ruelles response theory and proposed in Wouters and Lucarini [2012] is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are consider
Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic a