ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic law of large random correlation matrix

344   0   0.0 ( 0 )
 نشر من قبل Nestor Parolya Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a random vector $mathbf{y}=mathbf{Sigma}^{1/2}mathbf{x}$, where the $p$ elements of the vector $mathbf{x}$ are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $mathbf{Sigma}^{1/2}$ is a deterministic $ptimes p$ matrix such that the spectral norm of the population correlation matrix $mathbf{R}$ of $mathbf{y}$ is uniformly bounded. In this paper, we find that the log determinant of the sample correlation matrix $hat{mathbf{R}}$ based on a sample of size $n$ from the distribution of $mathbf{y}$ satisfies a CLT (central limit theorem) for $p/nto gammain (0, 1]$ and $pleq n$. Explicit formulas for the asymptotic mean and variance are provided. In case the mean of $mathbf{y}$ is unknown, we show that after recentering by the empirical mean the obtained CLT holds with a shift in the asymptotic mean. This result is of independent interest in both large dimensional random matrix theory and high-dimensional statistical literature of large sample correlation matrices for non-normal data. At last, the obtained findings are applied for testing of uncorrelatedness of $p$ random variables. Surprisingly, in the null case $mathbf{R}=mathbf{I}$, the test statistic becomes completely pivotal and the extensive simulations show that the obtained CLT also holds if the moments of order four do not exist at all, which conjectures a promising and robust test statistic for heavy-tailed high-dimensional data.



قيم البحث

اقرأ أيضاً

Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dep endence structure regulates the borrowing of information across different groups. Recent work has quantified the dependence between random measures in terms of Wasserstein distance from the maximally dependent scenario when $d=2$. By solving an intriguing max-min problem we are now able to define a Wasserstein index of dependence $I_mathcal{W}$ with the following properties: (i) it simultaneously quantifies the dependence of $d ge 2$ random measures; (ii) it takes values in [0,1]; (iii) it attains the extreme values ${0,1}$ under independence and complete dependence, respectively; (iv) since it is defined in terms of the underlying Levy measures, it is possible to evaluate it numerically in many Bayesian nonparametric models for partially exchangeable data.
Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between $mathbf{x}$ and $mathbf{y}$, from the perspective of the Canonical Correlation Analysis, under the high-dimensional setting: both $p$ and $q$ are proportional to the sample size $n$. In this paper, we focus on the case that $Sigma_{mathbf{x}mathbf{y}}$ is of finite rank $k$, i.e. there are $k$ nonzero canonical correlation coefficients, whose squares are denoted by $r_1geqcdotsgeq r_k>0$. Under the additional assumptions $(p+q)/nto yin (0,1)$ and $p/q otto 1$, we study the sample counterparts of $r_i,i=1,ldots,k$, i.e. the largest k eigenvalues of the sample canonical correlation matrix $S_{mathbf{x}mathbf{x}}^{-1}S_{mathbf{x}mathbf{y}}S_{mathbf{y}mathbf{y}}^{-1}S_{mathbf{y}mathbf{x}}$, namely $lambda_1geqcdotsgeq lambda_k$. We show that there exists a threshold $r_cin(0,1)$, such that for each $iin{1,ldots,k}$, when $r_ileq r_c$, $lambda_i$ converges almost surely to the right edge of the limiting spectral distribution of the sample canonical correlation matrix, denoted by $d_r$. When $r_i>r_c$, $lambda_i$ possesses an almost sure limit in $(d_r,1]$, from which we can recover $r_i$ in turn, thus provide an estimate of the latter in the high-dimensional scenario.
Consider a standard white Wishart matrix with parameters $n$ and $p$. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the $m times m$ pr incipal minors, under the asymptotic regime that $n,p,m$ go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high dimensional linear regression in statistics.
We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent ($rho$-mixing, $m$-dependent) responses under mild conditions. The LIL is useful to derive the asymptotic bounds for the discrepancy between the empirical process of the log-likelihood function and the true log-likelihood. As the application of the LIL, the strong consistency of some penalized likelihood based model selection criteria can be shown. Under some regularity conditions, the model selection criterion will be helpful to select the simplest correct model almost surely when the penalty term increases with model dimension and the penalty term has an order higher than $O({rm{loglog}}n)$ but lower than $O(n)$. Simulation studies are implemented to verify the selection consistency of BIC.
Recovering low-rank structures via eigenvector perturbation analysis is a common problem in statistical machine learning, such as in factor analysis, community detection, ranking, matrix completion, among others. While a large variety of bounds are a vailable for average errors between empirical and population statistics of eigenvectors, few results are tight for entrywise analyses, which are critical for a number of problems such as community detection. This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the spectral algorithm achieves exact recovery in the stochastic block model without any trimming or cleaning steps. The key is a first-order approximation of eigenvectors under the $ell_infty$ norm: $$u_k approx frac{A u_k^*}{lambda_k^*},$$ where ${u_k}$ and ${u_k^*}$ are eigenvectors of a random matrix $A$ and its expectation $mathbb{E} A$, respectively. The fact that the approximation is both tight and linear in $A$ facilitates sharp comparisons between $u_k$ and $u_k^*$. In particular, it allows for comparing the signs of $u_k$ and $u_k^*$ even if $| u_k - u_k^*|_{infty}$ is large. The results are further extended to perturbations of eigenspaces, yielding new $ell_infty$-type bounds for synchronization ($mathbb{Z}_2$-spiked Wigner model) and noisy matrix completion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا