ﻻ يوجد ملخص باللغة العربية
We discuss a minimal realization of the strongly interacting massive particle (SIMP) framework. The model includes a dark copy of QCD with three colors and three light flavors. A massive dark photon, kinetically mixed with the Standard Model hypercharge, maintains kinetic equilibrium between the dark and visible sectors. One of the dark mesons is necessarily unstable but long-lived, with potential impact on CMB observables. We show that an approximate isospin symmetry acting on the down-type quarks is an essential ingredient of the model. This symmetry stabilizes the dark matter and allows to split sufficiently the masses of the other states to suppress strongly their relic abundances. We discuss for the first time the SIMP cosmology with sizable mass splittings between all meson multiplets. We demonstrate that the SIMP mechanism remains efficient in setting the dark matter relic density, while CMB constraints on unstable relics can be robustly avoided. We also consider the phenomenological consequences of isospin breaking, including dark matter decay. Cosmological, astrophysical, and terrestrial probes are combined into a global picture of the parameter space. In addition, we outline an ultraviolet completion in the context of neutral naturalness, where confinement at the GeV scale is generic. We emphasize the general applicability of several novel features of the SIMP mechanism that we discuss here.
We study the impact of thermalization and number-changing processes in the dark sector on the yield of gravitationally produced dark matter (DM). We take into account the DM production through the $s$-channel exchange of a massless graviton both from
In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order
In N=1 supergravity supersymmetric (SUSY) and non-supersymmetric Minkowski vacua originating in the hidden sector can be degenerate. In the supersymmetric phase in flat Minkowski space non-perturbative supersymmetry breakdown may take place in the ob
The direct detection of gravitational waves offers an exciting new window onto our Universe. At the same time, multiple observational evidence and theoretical considerations motivate the presence of physics beyond the Standard Model. In this thesis,
We show that gravitational wave emission from neutron star binaries can be used to discover any generic long-ranged muonic force due to the large inevitable abundance of muons inside neutron stars. As a minimal consistent example, we focus on a gauge