ﻻ يوجد ملخص باللغة العربية
We study the impact of thermalization and number-changing processes in the dark sector on the yield of gravitationally produced dark matter (DM). We take into account the DM production through the $s$-channel exchange of a massless graviton both from the scattering of inflatons during the reheating era, and from the Standard Model bath via the UV freeze-in mechanism. By considering the DM to be a scalar, a fermion, and a vector boson we show, in a model-independent way, that DM self-interaction gives rise to a larger viable parameter space by allowing lower reheating temperature to be compatible with Planck observed relic abundance. As an example, we also discuss our findings in the ontext of the $mathbb{Z}_2$-symmetric scalar singlet DM model.
We discuss a minimal realization of the strongly interacting massive particle (SIMP) framework. The model includes a dark copy of QCD with three colors and three light flavors. A massive dark photon, kinetically mixed with the Standard Model hypercha
We study gravitational waves from the first-order electroweak phase transition in the $SU(N_c)$ gauge theory with $N_f/N_cgg 1$ (large $N_f$ QCD) as a candidate for the walking technicolor, which is modeled by the $U(N_f)times U(N_f)$ linear sigma mo
The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a series of hierarchical spontaneous symmetry
We study the dynamics of the Peccei-Quinn (PQ) phase transition for the QCD axion. In weakly coupled models the transition is typically second order except in the region of parameters where the PQ symmetry is broken through the Coleman-Weinberg mecha
Spectra of stochastic gravitational waves (GW) generated in cosmological first-order phase transitions are computed within strongly correlated theories with a dual holographic description. The theories are mostly used as models of dark sectors. In pa