ﻻ يوجد ملخص باللغة العربية
In N=1 supergravity supersymmetric (SUSY) and non-supersymmetric Minkowski vacua originating in the hidden sector can be degenerate. In the supersymmetric phase in flat Minkowski space non-perturbative supersymmetry breakdown may take place in the observable sector, inducing a non-zero and positive vacuum energy density. Assuming that such a supersymmetric phase and the phase in which we live are degenerate, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the Split-SUSY scenario of the supersymmetry breaking if the SUSY breaking scale is of order of 10^{10} GeV.
It is well known that global symmetries protect local supersymmetry and a zero value for the cosmological constant in no--scale supergravity. The breakdown of these symmetries, which ensure the vanishing of the vacuum energy density, results in a set
In N=1 supergravity the tree-level scalar potential of the hidden sector may have a minimum with broken local supersymmetry (SUSY) as well as a supersymmetric Minkowski vacuum. These vacua can be degenerate, allowing for a consistent implementation o
We argue that the exact degeneracy of vacua in N=1 supergravity can shed light on the smallness of the cosmological constant. The presence of such vacua, which are degenerate to very high accuracy, may also result in small values of the quartic Higgs
In this paper we revisit the dynamical dark energy model building based on single scalar field involving higher derivative terms. By imposing a degenerate condition on the higher derivatives in curved spacetime, one can select the models which are fr
We discuss the possibility to construct supergravity models with a single superfield describing inflation as well as the tiny cosmological constant $V sim 10^{{-120}}$. One could expect that the simplest way to do it is to study models with a supersy