ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph modelling approaches for motorway traffic flow prediction

114   0   0.0 ( 0 )
 نشر من قبل Marian-Andrei Rizoiu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Traffic flow prediction, particularly in areas that experience highly dynamic flows such as motorways, is a major issue faced in traffic management. Due to increasingly large volumes of data sets being generated every minute, deep learning methods have been used extensively in the latest years for both short and long term prediction. However, such models, despite their efficiency, need large amounts of historical information to be provided, and they take a considerable amount of time and computing resources to train, validate and test. This paper presents two new spatial-temporal approaches for building accurate short-term prediction along a popular motorway in Sydney, by making use of the graph structure of the motorway network (including exits and entries). The methods are built on proximity-based approaches, denoted backtracking and interpolation, which uses the most recent and closest traffic flow information for each of the target counting stations along the motorway. The results indicate that for short-term predictions (less than 10 minutes into the future), the proposed graph-based approaches outperform state-of-the-art deep learning models, such as long-term short memory, convolutional neuronal networks or hybrid models.



قيم البحث

اقرأ أيضاً

In this article we demonstrate how graph theory can be used to identify those stations in the London underground network which have the greatest influence on the functionality of the traffic, and proceed, in an innovative way, to assess the impact of a station closure on service levels across the city. Such underground network vulnerability analysis offers the opportunity to analyse, optimize and enhance the connectivity of the London underground network in a mathematically tractable and physically meaningful manner.
A unifying graph theoretic framework for the modelling of metro transportation networks is proposed. This is achieved by first introducing a basic graph framework for the modelling of the London underground system from a diffusion law point of view. This forms a basis for the analysis of both station importance and their vulnerability, whereby the concept of graph vertex centrality plays a key role. We next explore k-edge augmentation of a graph topology, and illustrate its usefulness both for improving the network robustness and as a planning tool. Upon establishing the graph theoretic attributes of the underlying graph topology, we proceed to introduce models for processing data on such a metro graph. Commuter movement is shown to obey the Ficks law of diffusion, where the graph Laplacian provides an analytical model for the diffusion process of commuter population dynamics. Finally, we also explore the application of modern deep learning models, such as graph neural networks and hyper-graph neural networks, as general purpose models for the modelling and forecasting of underground data, especially in the context of the morning and evening rush hours. Comprehensive simulations including the passenger in- and out-flows during the morning rush hour in London demonstrates the advantages of the graph models in metro planning and traffic management, a formal mathematical approach with wide economic implications.
162 - Fuxian Li , Jie Feng , Huan Yan 2021
Traffic prediction is the cornerstone of an intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are propo sed for spatio-temporal modeling, they ignore the dynamic characteristics of correlations among locations on road networks. Meanwhile, most Recurrent Neural Network (RNN) based works are not efficient enough due to their recurrent operations. Additionally, there is a severe lack of fair comparison among different methods on the same datasets. To address the above challenges, in this paper, we propose a novel traffic prediction framework, named Dynamic Graph Convolutional Recurrent Network (DGCRN). In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes, while the parameters of dynamic filters are generated at each time step. We filter the node embeddings and then use them to generate a dynamic graph, which is integrated with a pre-defined static graph. As far as we know, we are the first to employ a generation method to model fine topology of dynamic graph at each time step. Further, to enhance efficiency and performance, we employ a training strategy for DGCRN by restricting the iteration number of decoder during forward and backward propagation. Finally, a reproducible standardized benchmark and a brand new representative traffic dataset are opened for fair comparison and further research. Extensive experiments on three datasets demonstrate that our model outperforms 15 baselines consistently.
Real-time traffic prediction models play a pivotal role in smart mobility systems and have been widely used in route guidance, emerging mobility services, and advanced traffic management systems. With the availability of massive traffic data, neural network-based deep learning methods, especially the graph convolutional networks (GCN) have demonstrated outstanding performance in mining spatio-temporal information and achieving high prediction accuracy. Recent studies reveal the vulnerability of GCN under adversarial attacks, while there is a lack of studies to understand the vulnerability issues of the GCN-based traffic prediction models. Given this, this paper proposes a new task -- diffusion attack, to study the robustness of GCN-based traffic prediction models. The diffusion attack aims to select and attack a small set of nodes to degrade the performance of the entire prediction model. To conduct the diffusion attack, we propose a novel attack algorithm, which consists of two major components: 1) approximating the gradient of the black-box prediction model with Simultaneous Perturbation Stochastic Approximation (SPSA); 2) adapting the knapsack greedy algorithm to select the attack nodes. The proposed algorithm is examined with three GCN-based traffic prediction models: St-Gcn, T-Gcn, and A3t-Gcn on two cities. The proposed algorithm demonstrates high efficiency in the adversarial attack tasks under various scenarios, and it can still generate adversarial samples under the drop regularization such as DropOut, DropNode, and DropEdge. The research outcomes could help to improve the robustness of the GCN-based traffic prediction models and better protect the smart mobility systems. Our code is available at https://github.com/LYZ98/Adversarial-Diffusion-Attacks-on-Graph-based-Traffic-Prediction-Models
Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial -temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا