ﻻ يوجد ملخص باللغة العربية
Real-time traffic prediction models play a pivotal role in smart mobility systems and have been widely used in route guidance, emerging mobility services, and advanced traffic management systems. With the availability of massive traffic data, neural network-based deep learning methods, especially the graph convolutional networks (GCN) have demonstrated outstanding performance in mining spatio-temporal information and achieving high prediction accuracy. Recent studies reveal the vulnerability of GCN under adversarial attacks, while there is a lack of studies to understand the vulnerability issues of the GCN-based traffic prediction models. Given this, this paper proposes a new task -- diffusion attack, to study the robustness of GCN-based traffic prediction models. The diffusion attack aims to select and attack a small set of nodes to degrade the performance of the entire prediction model. To conduct the diffusion attack, we propose a novel attack algorithm, which consists of two major components: 1) approximating the gradient of the black-box prediction model with Simultaneous Perturbation Stochastic Approximation (SPSA); 2) adapting the knapsack greedy algorithm to select the attack nodes. The proposed algorithm is examined with three GCN-based traffic prediction models: St-Gcn, T-Gcn, and A3t-Gcn on two cities. The proposed algorithm demonstrates high efficiency in the adversarial attack tasks under various scenarios, and it can still generate adversarial samples under the drop regularization such as DropOut, DropNode, and DropEdge. The research outcomes could help to improve the robustness of the GCN-based traffic prediction models and better protect the smart mobility systems. Our code is available at https://github.com/LYZ98/Adversarial-Diffusion-Attacks-on-Graph-based-Traffic-Prediction-Models
Recent work has shown that graph neural networks (GNNs) are vulnerable to adversarial attacks on graph data. Common attack approaches are typically informed, i.e. they have access to information about node attributes such as labels and feature vector
Behavior prediction of traffic actors is an essential component of any real-world self-driving system. Actors long-term behaviors tend to be governed by their interactions with other actors or traffic elements (traffic lights, stop signs) in the scen
Deep neural networks, while generalize well, are known to be sensitive to small adversarial perturbations. This phenomenon poses severe security threat and calls for in-depth investigation of the robustness of deep learning models. With the emergence
Traffic prediction is the cornerstone of an intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are propo
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa