ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Diffusion Attacks on Graph-based Traffic Prediction Models

82   0   0.0 ( 0 )
 نشر من قبل Lyuyi Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-time traffic prediction models play a pivotal role in smart mobility systems and have been widely used in route guidance, emerging mobility services, and advanced traffic management systems. With the availability of massive traffic data, neural network-based deep learning methods, especially the graph convolutional networks (GCN) have demonstrated outstanding performance in mining spatio-temporal information and achieving high prediction accuracy. Recent studies reveal the vulnerability of GCN under adversarial attacks, while there is a lack of studies to understand the vulnerability issues of the GCN-based traffic prediction models. Given this, this paper proposes a new task -- diffusion attack, to study the robustness of GCN-based traffic prediction models. The diffusion attack aims to select and attack a small set of nodes to degrade the performance of the entire prediction model. To conduct the diffusion attack, we propose a novel attack algorithm, which consists of two major components: 1) approximating the gradient of the black-box prediction model with Simultaneous Perturbation Stochastic Approximation (SPSA); 2) adapting the knapsack greedy algorithm to select the attack nodes. The proposed algorithm is examined with three GCN-based traffic prediction models: St-Gcn, T-Gcn, and A3t-Gcn on two cities. The proposed algorithm demonstrates high efficiency in the adversarial attack tasks under various scenarios, and it can still generate adversarial samples under the drop regularization such as DropOut, DropNode, and DropEdge. The research outcomes could help to improve the robustness of the GCN-based traffic prediction models and better protect the smart mobility systems. Our code is available at https://github.com/LYZ98/Adversarial-Diffusion-Attacks-on-Graph-based-Traffic-Prediction-Models

قيم البحث

اقرأ أيضاً

Recent work has shown that graph neural networks (GNNs) are vulnerable to adversarial attacks on graph data. Common attack approaches are typically informed, i.e. they have access to information about node attributes such as labels and feature vector s. In this work, we study adversarial attacks that are uninformed, where an attacker only has access to the graph structure, but no information about node attributes. Here the attacker aims to exploit structural knowledge and assumptions, which GNN models make about graph data. In particular, literature has shown that structural node centrality and similarity have a strong influence on learning with GNNs. Therefore, we study the impact of centrality and similarity on adversarial attacks on GNNs. We demonstrate that attackers can exploit this information to decrease the performance of GNNs by focusing on injecting links between nodes of low similarity and, surprisingly, low centrality. We show that structure-based uninformed attacks can approach the performance of informed attacks, while being computationally more efficient. With our paper, we present a new attack strategy on GNNs that we refer to as Structack. Structack can successfully manipulate the performance of GNNs with very limited information while operating under tight computational constraints. Our work contributes towards building more robust machine learning approaches on graphs.
Behavior prediction of traffic actors is an essential component of any real-world self-driving system. Actors long-term behaviors tend to be governed by their interactions with other actors or traffic elements (traffic lights, stop signs) in the scen e. To capture this highly complex structure of interactions, we propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene. The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges. This explicit reasoning about discrete interaction types not only helps in predicting future motion, but also enhances the interpretability of the model, which is important for safety-critical applications such as autonomous driving. We predict actors trajectories and interaction types using a graph neural network, which is trained in a semi-supervised manner. We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
221 - Xiao Zang , Yi Xie , Jie Chen 2020
Deep neural networks, while generalize well, are known to be sensitive to small adversarial perturbations. This phenomenon poses severe security threat and calls for in-depth investigation of the robustness of deep learning models. With the emergence of neural networks for graph structured data, similar investigations are urged to understand their robustness. It has been found that adversarially perturbing the graph structure and/or node features may result in a significant degradation of the model performance. In this work, we show from a different angle that such fragility similarly occurs if the graph contains a few bad-actor nodes, which compromise a trained graph neural network through flipping the connections to any targeted victim. Worse, the bad actors found for one graph model severely compromise other models as well. We call the bad actors ``anchor nodes and propose an algorithm, named GUA, to identify them. Thorough empirical investigations suggest an interesting finding that the anchor nodes often belong to the same class; and they also corroborate the intuitive trade-off between the number of anchor nodes and the attack success rate. For the dataset Cora which contains 2708 nodes, as few as six anchor nodes will result in an attack success rate higher than 80% for GCN and other three models.
162 - Fuxian Li , Jie Feng , Huan Yan 2021
Traffic prediction is the cornerstone of an intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are propo sed for spatio-temporal modeling, they ignore the dynamic characteristics of correlations among locations on road networks. Meanwhile, most Recurrent Neural Network (RNN) based works are not efficient enough due to their recurrent operations. Additionally, there is a severe lack of fair comparison among different methods on the same datasets. To address the above challenges, in this paper, we propose a novel traffic prediction framework, named Dynamic Graph Convolutional Recurrent Network (DGCRN). In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes, while the parameters of dynamic filters are generated at each time step. We filter the node embeddings and then use them to generate a dynamic graph, which is integrated with a pre-defined static graph. As far as we know, we are the first to employ a generation method to model fine topology of dynamic graph at each time step. Further, to enhance efficiency and performance, we employ a training strategy for DGCRN by restricting the iteration number of decoder during forward and backward propagation. Finally, a reproducible standardized benchmark and a brand new representative traffic dataset are opened for fair comparison and further research. Extensive experiments on three datasets demonstrate that our model outperforms 15 baselines consistently.
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa r, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا