ﻻ يوجد ملخص باللغة العربية
The XENON1T collaboration has observed an excess in electronic recoil events below $5~mathrm{keV}$ over the known background, which could originate from beyond-the-Standard-Model physics. The solar axion is a well-motivated model that has been proposed to explain the excess, though it has tension with astrophysical observations. The axions traveled from the Sun can be absorbed by the electrons in the xenon atoms via the axion-electron coupling. Meanwhile, they can also scatter with the atoms through the inverse Primakoff process via the axion-photon coupling, which emits a photon and mimics the electronic recoil signals. We found that the latter process cannot be neglected. After including the $rm{keV}$ photon produced via inverse Primakoff in the detection, the tension with the astrophysical constraints can be significantly reduced. We also explore scenarios involving additional new physics to further alleviate the tension with the astrophysical bounds.
We argue that the interpretation in terms of solar axions of the recent XENON1T excess is not tenable when confronted with astrophysical observations of stellar evolution. We discuss the reasons why the emission of a flux of solar axions sufficiently
This work is a study of some possible background sources in the XENON1T environment which might affect the energy spectrum of electronic recoil events in the lower side and might contribute to the observed excess. We have identified some additional p
Solar interpretations of the recent XENON1T excess events, such as axion or dark photon emissions from the sun, are thought to be at odds with stellar cooling bounds from the horizontal branch stars and red giants. We propose a simple effective field
We consider a renormalizable theory, which successfully explains the number of Standard Model (SM) fermion families and whose non-SM scalar sector includes an axion dark matter as well as a field responsible for cosmological inflation. In such theory
Recently XENON1T Collaboration announced that they observed some excess in the electron recoil energy around a 2-3 keV. We show that this excess can be interpreted as exothermic scattering of excited dark matter (XDM), $XDM + e_{atomic} rightarrow DM