ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking axion-like dark matter, the XENON1T excess, inflation and the tiny active neutrino masses

77   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a renormalizable theory, which successfully explains the number of Standard Model (SM) fermion families and whose non-SM scalar sector includes an axion dark matter as well as a field responsible for cosmological inflation. In such theory, the axion gets its mass via radiative corrections at one-loop level mediated by virtual top quark, right handed Majorana neutrinos and SM gauge bosons. Its mass is obtained in the range $4$ keV$div$ $40$ keV, consistent with the one predicted by XENON1T experiment, when the right handed Majorana neutrino mass is varied from $100$ GeV up to $350$ GeV, thus implying that the light active neutrino masses are generated from a low scale type I seesaw mechanism. Furthermore, the theory under consideration can also successfully accommodates the XENON1T excess provided that the PQ symmetry is spontaneously broken at the $10^{10}$ GeV scale.

قيم البحث

اقرأ أيضاً

118 - Wei Cheng , Ligong Bian , 2021
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more general. The $n_1$ build the connection between GNI and other ALP inflation model, $n_2$ controls the inflaton mass. After considering the cosmic microwave background and other cosmological observation limits, the model can realize small-field inflation with a wide mass range, and the ALP inflaton considering here can serve as the DM candidate for certain parameter spaces.
Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic rays (CRs) with the atmosphere. Due to the boost effect of high energy CRs, we show that the light ADM can be fast-moving and successfully fit the observed electron recoil spectrum through the ADM-electron scattering process. Meanwhile, our ADM predicts the scattering cross section $sigma_e sim {cal O}(10^{-38}- 10^{-39}$) cm$^{2}$, and thus can evade other direct detection constraints. The search for light meson rare decays, such as $eta to pi + slashed E_T$, would provide a complementary probe of our ADM in the future.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax y, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
We propose boosted dark matter (BDM) as a possible explanation for the excess of keV electron recoil events observed by XENON1T. BDM particles have velocities much larger than those typical of virialized dark matter, and, as such, BDM-electron scatte ring can naturally produce keV electron recoils. We show that the required BDM-electron scattering cross sections can be easily realized in a simple model with a heavy vector mediator. Though these cross sections are too large for BDM to escape from the Sun, the BDM flux can originate from the Galactic Center or from halo dark matter annihilations. Furthermore, a daily modulation of the BDM signal will be present, which could not only be used to differentiate it from various backgrounds, but would also provide important directional information for the BDM flux.
We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by relatively low-mass Luminous Dark Matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock), to produce a he avier dark state with a ~2.75 keV mass splitting. This heavier state then decays within the detector, producing a peak in the electron recoil spectrum which is a good fit to the observed excess. We comment on the ability of future direct detection datasets to differentiate this model from other Beyond the Standard Model scenarios, and from possible tritium backgrounds, including the use of diurnal modulation, multi-channel signals etc.,~as possible distinguishing features of this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا