ﻻ يوجد ملخص باللغة العربية
We consider a renormalizable theory, which successfully explains the number of Standard Model (SM) fermion families and whose non-SM scalar sector includes an axion dark matter as well as a field responsible for cosmological inflation. In such theory, the axion gets its mass via radiative corrections at one-loop level mediated by virtual top quark, right handed Majorana neutrinos and SM gauge bosons. Its mass is obtained in the range $4$ keV$div$ $40$ keV, consistent with the one predicted by XENON1T experiment, when the right handed Majorana neutrino mass is varied from $100$ GeV up to $350$ GeV, thus implying that the light active neutrino masses are generated from a low scale type I seesaw mechanism. Furthermore, the theory under consideration can also successfully accommodates the XENON1T excess provided that the PQ symmetry is spontaneously broken at the $10^{10}$ GeV scale.
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more
Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax
We propose boosted dark matter (BDM) as a possible explanation for the excess of keV electron recoil events observed by XENON1T. BDM particles have velocities much larger than those typical of virialized dark matter, and, as such, BDM-electron scatte
We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by relatively low-mass Luminous Dark Matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock), to produce a he