ﻻ يوجد ملخص باللغة العربية
We argue that the interpretation in terms of solar axions of the recent XENON1T excess is not tenable when confronted with astrophysical observations of stellar evolution. We discuss the reasons why the emission of a flux of solar axions sufficiently intense to explain the anomalous data would radically alter the distribution of certain type of stars in the color-magnitude diagram in first place, and would also clash with a certain number of other astrophysical observables. Quantitatively, the significance of the discrepancy ranges from $3.3sigma$ for the rate of period change of pulsating White Dwarfs, and exceedes $19sigma$ for the $R$-parameter and for $M_{I,{rm TRGB}}$.
The recent electron recoil excess observed by XENON1T has a possible interpretation in terms of solar axions coupled to electrons. If such axions are still relativistic at recombination they would also leave a cosmic imprint in the form of an additio
The Fermi satellite has recently detected gamma ray emission from the central regions of our Galaxy. This may be evidence for dark matter particles, a major component of the standard cosmological model, annihilating to produce high-energy photons. We
The XENON1T collaboration has observed an excess in electronic recoil events below $5~mathrm{keV}$ over the known background, which could originate from beyond-the-Standard-Model physics. The solar axion is a well-motivated model that has been propos
We entertain the exotic possibility that dark matter (DM) decays or annihilations taking place in our galaxy may produce a flux of relativistic very weakly-coupled bosons, axions or dark photons. We show that there exist several upper bounds for this
Solar interpretations of the recent XENON1T excess events, such as axion or dark photon emissions from the sun, are thought to be at odds with stellar cooling bounds from the horizontal branch stars and red giants. We propose a simple effective field