ﻻ يوجد ملخص باللغة العربية
We provide a semi-classical description of the inclusive gluon induced Deep Inelastic Scattering cross section in a way that accounts for the leading powers in both the Regge and Bjorken limits. Our approach thus allows a systematic matching of small and moderate $x_{rm Bj}$ regimes of gluon proton structure functions. We find a new unintegrated gluon distribution with an explicit dependence on the longitudinal momentum fraction $x$ which entirely spans both the dipole operator and the gluonic Parton Distribution Function. Computing this gauge invariant gluon operator on the lattice could allow to probe the energy dependence of the saturation scale from first principles.
We derive analytical results for unintegrated color dipole gluon distribution function at small transverse momentum. By Fourier transforming the $S$-matrix for large dipoles we derive the results in the form of a series of Bells polynomials. Interest
We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method
Exclusive emissions of vector mesons in forward directions of rapidity offer us a faultless chance to probe the proton structure at small-$x$. A high-energy factorization formula is established within BFKL, given as the convolution of an impact facto
Sufficiently inclusive processes, like the deep inelastic scattering (DIS), are described in terms of scale-dependent parton distributions, which correspond to the density of partons with a given longitudinal momentum fraction, integrated over the pa
Analytical study of the rapidity distribution of the final state particles in deep inelastic scattering at small x is presented. We separate and analyse three sources of particle production: fragmentation of the quark-antiquark pair, accompanying coh