ﻻ يوجد ملخص باللغة العربية
Sufficiently inclusive processes, like the deep inelastic scattering (DIS), are described in terms of scale-dependent parton distributions, which correspond to the density of partons with a given longitudinal momentum fraction, integrated over the parton transverse momentum. For less inclusive processes, one needs to consider densities unintegrated over the transverse momentum. This work focuses on the unintegrated gluon distribution (UGD), describing the probability that a gluon can be emitted by a colliding proton, with definite longitudinal fraction and transverse momentum. Through the leptoproduction of the $rho$-meson at HERA, existent models for the UGD will be investigated and compared with experimental data.
Exclusive emissions of vector mesons in forward directions of rapidity offer us a faultless chance to probe the proton structure at small-$x$. A high-energy factorization formula is established within BFKL, given as the convolution of an impact facto
We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method
We present a nonperturbative QCD calculation of diffractive vector meson production in virtual photon nucleon scattering at high energy. We use the nonperturbative model of the stochastic QCD vacuum which yields linear confinement and makes specific
We provide a semi-classical description of the inclusive gluon induced Deep Inelastic Scattering cross section in a way that accounts for the leading powers in both the Regge and Bjorken limits. Our approach thus allows a systematic matching of small
We compute the leading order (LO) $qgto q gamma$ and next-to-leading order (NLO) $ggto q{bar q} gamma$ contributions to inclusive photon production in proton-proton (p+p) collisions at the LHC. These channels provide the dominant contribution at LO a